conditional pmf: $\left.\quad \begin{array}{l}\text { discrete } \\ p_{X \mid Y}(x \mid y)\end{array}\right) \frac{p(x, y)}{p_{Y}(y)} \quad$ Note similarity to

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

conditional pdf: $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$

Use the conditional pmf or pdf to compute conditional expectation and conditional variance.

1. Let X and Y have joint density $f(x, y)=\frac{1}{2}$ for $0 \leq x \leq y \leq 2$.
(a) Sketch the joint density of X and Y.

(b) What is the marginal density of X ?

$$
f_{x}(x)=\int_{x}^{2} f(x, y) d y=\int_{x}^{2} \frac{1}{2} d y=\left.\frac{y}{2}\right|_{y=x} ^{y=2}=\frac{2}{2}-\frac{x}{2}=\frac{2-x}{2}
$$

for $0 \leq x \leq 2$
(c) Suppose you know that $X=\frac{2}{3}$. What does $f\left(\frac{2}{3}, y\right)$ tell you about the density of Y, given that $X=\frac{2}{3}$?

Since $f\left(\frac{2}{3}, y\right)$ is constant, the density of y given $X=\frac{2}{3}$ is constant for $\frac{2}{3} \leq y \leq 2$.

Specifically, $f_{Y \mid X}\left(y \left\lvert\, \frac{2}{3}\right.\right)=\frac{3}{4} \quad$ for $\quad \frac{2}{3} \leq y \leq 2$.
(d) Suppose you know that $X=x_{0}$. What is then the density of Y ?

$$
\begin{aligned}
& \text { If } X=x_{0}, \text { then } Y \sim U_{\text {nf }}\left[x_{0}, 2\right] \text {. } \\
& \text { So } f_{Y \mid X}\left(y \mid x_{0}\right)=\frac{1}{2-x_{0}} \\
& \text { for } x_{0} \leq y \leq 2 \text {. }
\end{aligned}
$$

(e) In part (d), you found the conditional density $f_{Y \mid X}(y \mid x$,$) . How does this relate to the joint$ density $f(x, y)$ and the marginal density $f_{X}(x)$?

$$
\begin{aligned}
& \frac{f\left(x_{0}, y\right)}{f_{x}\left(x_{0}\right)}=\frac{\frac{1}{2}}{\frac{2-x_{0}}{2}} \cdot \frac{2}{2}=\frac{1}{2-x_{0}} \text { for } x_{0} \leq y \leq 2 \\
& \approx f_{y}\left(y\left(x_{0}\right)\right.
\end{aligned}
$$

(f) If $X=\frac{2}{3}$, then what is the probability that $Y \leq 1$?

$$
\begin{aligned}
& \qquad P\left(y \leq 1 \left\lvert\, X=\frac{2}{3}\right.\right)=\int_{\frac{2}{3}}^{1} f_{y \mid x}\left(y \left\lvert\, \frac{2}{3}\right.\right) d y=\int_{\frac{2}{3}}^{1} \frac{3}{4} d y=\left.\frac{3}{4} y\right|_{\frac{2}{3}} ^{1}=\frac{3}{4}\left(1-\frac{2}{3}\right) \\
& \frac{2}{3} \frac{1}{1}+1-1
\end{aligned}
$$

$$
\begin{aligned}
E(Y \mid X & \left.=x_{0}\right)=\int_{x_{0}}^{2} y \cdot f_{y \mid x}\left(y \mid x_{0}\right) d y=\int_{x_{0}}^{2} y \cdot \frac{1}{2-x_{0}} d y=\frac{1}{2-x_{0}} \int_{x_{0}}^{2} y d y \\
& =\left.\frac{1}{2-x_{0}} \cdot \frac{1}{2} y^{2}\right|_{x_{0}} ^{2}=\frac{1}{2-x_{0}} \cdot \frac{1}{2}\left(2^{2}-x_{0}^{2}\right)=\frac{2+x_{0}}{2} \underbrace{\frac{x_{0}+2}{2}}_{x_{0}}{ }_{2}^{2}
\end{aligned}
$$

2. The joint pdf of X and Y is $f(x, y)=3 x$, for $0 \leq y \leq x \leq 1$.
(a) What is the conditional distribution of X given $Y=y$?
(b) What is $E(X \mid Y=y)$?
(c) What is $\operatorname{Var}(X \mid Y=y)$?
3. For continuous random variables X and Y, show that $E(E(X \mid Y))=E(X)$.
4. The number of eggs N found in nests of a certain species of turtles has a Poisson distribution with mean λ. Each egg has probability p of being viable, and this event is independent from egg to egg. Find the mean and the variance of the number of viable eggs per nest.
\star BONUS: If X and Y are independent binomial random variables with identical parameters n and p, calculate the conditional expected value of X given that $X+Y=m$.
