1. Let X and Y be independent uniform variables on $[0,1]$, and let $W=X+Y$.
(a) What do you think the pdf of W will look like? Make a guess. Draw a sketch.

We know $O \leq W \leq 2$.
Possibly the pdf of W looks like:

(b) Use convolution to find a formula for the pdf of W.

$$
\left.\begin{array}{rl}
f_{w}(w)= & \int_{-\infty}^{\infty} \underbrace{f_{X}(x)}_{\uparrow} \underbrace{f_{Y}(w-x)=1}_{\uparrow} \\
f_{X}(x)=1 & \begin{array}{l}
\text { if } 0 \leq w-x \leq 1 \\
\text { if } 0 \leq x \leq 1 \\
w-1 \leq x \leq w
\end{array}
\end{array}\right]\left[\begin{array}{l}
\text { If both conditions } \\
\text { are true, then } \\
\text { integrand is 1; } \\
\text { else integrand is } 0 .
\end{array}\right.
$$

If $\quad 0 \leq w \leq 1$

$$
f_{w}(w)=\int_{0}^{w} 1 d x=w
$$

If $1 \leq w \leq 2$

$$
f_{w}(w)=\int_{w-1}^{1} 1 d x=w-(w-1)=2-w
$$

The density of W is:

$$
f_{w}(w)=\left\{\begin{array}{cl}
w & \text { if } 0 \leq w \leq 1 \\
2-w & \text { if } 1 \leq w \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

2. Use convolution to write an integral that gives the pdf of the sum of three independent Unif[0,1] random variables. How could you evaluate the integral?

$$
\begin{aligned}
\text { Let } T= & X_{1}+X_{2}+X_{3}, \quad X_{i} \sim \text { Unif }[0,1] \\
f_{T}(t)= & \int_{0}^{3} f_{X}(x) f_{w}(t-x) d x \longleftarrow \begin{array}{r}
\text { Piecewise functions make this tricky } \\
\uparrow \\
\\
\\
\\
\text { Unify }[0,1] \text { integrate. Use Mathematical. }
\end{array}
\end{aligned}
$$

If you want to do the integral by hand, here are the details:

$$
f_{T}(t)=\left\{\begin{array}{l}
\int_{0}^{t}(t-x) d x=\frac{1}{2} t^{2}, \quad \text { if } 0 \leq t<1 \\
\int_{0}^{t-1}(2-t+x) d x+\int_{t-1}^{1}(t-x) d x=3 t-t^{2}-\frac{3}{2}, \text { if } 1 \leq t<2 \\
\int_{t-2}^{1}(2-t+x) d x=\frac{1}{2} t^{2}-3 t+\frac{9}{2}, \quad \text { if } 2 \leq t \leq 3
\end{array}\right.
$$

3. Let $X_{k} \sim N(k, 1)$ for $k \in\{1,2, \ldots, m\}$, and suppose all of the X_{k} are independent.
(a) What is the distribution of $X_{1}+X_{2}+\cdots+X_{m}$? $\quad N(\mu, \sigma)$ hes mg $\exp \left(\mu t+\sigma^{2} t^{2} / 2\right)$

$$
\begin{aligned}
& M_{x_{k}}(t)=\exp \left(k t+t^{2} / 2\right) \\
& M_{x_{1}+\cdots+x_{m}}(t)=\exp \left(t+t^{2} / 2\right) \exp \left(2 t+t^{2} / 2\right) \cdots \exp \left(n t+t^{2} / 2\right)=\exp \left((1+2+\cdots+m) t+m t^{2} / 2\right)=\exp \left(\frac{m(m+1)}{2} t+m \frac{t^{2}}{2}\right) \\
& \quad \text { Thus, } X_{1}+\cdots+X_{m} \sim N\left(\frac{m(m+1)}{2}, \sqrt{m}\right) .
\end{aligned}
$$

(b) What is the distribution of $X_{1}+2 X_{2}+\cdots+m X_{m}$?

$$
\begin{aligned}
& M_{k x_{k}}(t)= M_{x_{k}}(k t)=\exp \left(k^{2} t+\frac{k^{2}+t^{2}}{2}\right) \\
& M_{x_{1}+2 x_{2} \cdots m x_{m}}(t)=\exp \left(t+t^{2} / 2\right) \exp \left(4 t+4 t^{2} / 2\right) \cdots \exp \left(n^{2} t+m^{2} t^{2} / 2\right)=\exp \left(\left(1+4+\cdots+m^{2}\right) t+\left(1+4+\cdots+m^{2}\right) t^{2} / 2\right) \\
&=\exp \left(S t+S t^{2} / 2\right) \text {, where } \quad S=1+4+\cdots+m^{2}=\frac{m(m+1)(2 m+1)}{6} \\
& \text { so the sum is } N(S, \sqrt{s}) .
\end{aligned}
$$

4. Use moment generating functions to justify the following statements.
(a) The sum of n independent exponential random variables with common parameter λ has a gamma distribution with parameters $\alpha=n$ and $\beta=\frac{1}{\lambda}$.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $\operatorname{Exp}(\lambda)$ random variables and $Y=X_{1}+X_{2}+\cdots+X_{n}$.
exponential mgf: $\quad M_{x_{i}}(t)=\frac{\lambda}{\lambda-t}$ for $t<\lambda$
Then $M_{Y}(t)=M_{X_{1}}(t) M_{X_{2}}(t) \cdots M_{X_{n}}(t)$

$$
\begin{aligned}
& =\left(\frac{\lambda}{\lambda-t}\right)\left(\frac{\lambda}{\lambda-t}\right) \cdots\left(\frac{\lambda}{\lambda-t}\right)=\left(\frac{\lambda}{\lambda-t}\right)^{n}=\frac{1}{\left(1-\frac{t}{\lambda}\right)^{n}} \quad \operatorname{Mamma}_{X_{1}} \quad \operatorname{Mg}_{\text {am }}\left(\alpha=\beta=\frac{1}{\lambda}\right)
\end{aligned}
$$

Thus, $Y \sim \operatorname{Gamma}\left(\alpha=n, \beta=\frac{1}{\lambda}\right)$.
(b) The sum of n independent geometric random variables with common parameter p has a negative binomial distribution with parameters $r=n$ and p.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $\operatorname{Geom}(p)$ random variables

$$
\text { and } Y \sim X_{1}+X_{2}+\cdots+X_{n} .
$$

Geometric mgr: $M_{x_{i}}(t)=\frac{p e^{t}}{1-(1-p) e^{t}}$
Then $M_{y}(t)=M_{x_{1}}(t) M_{x_{2}}(t) \ldots M_{x_{n}}(t)=\left(\frac{p e t}{1-(1-p) e^{t}}\right)^{n}$,
which is the mgf of a negative binomial distribution with parameters $r=n$ and p.

