Worksheet Solutions

Math 262•17 November 2023

1. Let $X \sim \operatorname{Unif}[-1,1]$ and $Y=X^{2}$.
(a) Compute $E(X), E(Y)$, and $E(X Y)$. Does $E(X Y)=E(X) E(Y)$?

$$
\begin{gathered}
E(X)=0, \quad E(Y)=E\left(X^{2}\right)=\int_{-1}^{1} x^{2} \cdot \frac{1}{2} d x=\left.\frac{1}{6} x^{3}\right|_{-1} ^{1}=\frac{1}{3} \\
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \cdot \frac{1}{2} d x=\left.\frac{1}{8} x^{4}\right|_{-1} ^{1}=0 \\
\text { Yes, } E(X Y)=E(X) E(Y)
\end{gathered}
$$

(b) Are X and Y independent? Why or why not?

No: the value of X determines Y.

Another Example: $U \sim$ Unit $[0,2 \pi], \quad X=\cos (U), Y^{\prime}=\sin (U)$
I. Two standard, fair dice are rolled. Let X_{1} and X_{2} be the numbers that appear on the dice.
II. An urn contains balls labeled 1, 2, 3, 4, 5, 6. Let Y_{1} and Y_{2} be the numbers on two balls drawn without replacement from the urn.
2. What is the distribution of X_{i} ? How about the distribution of Y_{i} ?

$$
X_{i} \text { and } Y_{i} \text { are both uniformly distributed on }\{1,2,3,4,5,6\} \text {. }
$$

3. What are $E\left(X_{i}\right)$ and $\operatorname{Var}\left(X_{i}\right)$? How about $E\left(Y_{i}\right)$ and $\operatorname{Var}\left(Y_{i}\right)$?

$$
\begin{gathered}
E\left(X_{i}\right)=\frac{7}{2}, \quad E\left(X_{i}\right)^{2}=\frac{1}{6}(1+4+9+16+25+36)=\frac{91}{6} \\
\operatorname{Var}\left(X_{i}\right)=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
\end{gathered}
$$

Since X_{i} and Y_{i} have the same distribution,

$$
E\left(Y_{i}\right)=\frac{7}{2} \quad \text { and } \quad \operatorname{Var}\left(Y_{i}\right)=\frac{35}{12}
$$

4. What are $E\left(X_{1}+X_{2}\right)$ and $\operatorname{Var}\left(X_{1}+X_{2}\right)$?

By linearity, $E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=7$
Since X_{1} and X_{2} are independent,

$$
\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=\frac{35}{6}
$$

5. What and $E\left(Y_{1}+Y_{2}\right)$ and $\operatorname{Var}\left(Y_{1}+Y_{2}\right)$?

By linearity, $E\left(Y_{1}+Y_{2}\right)=E\left(Y_{1}\right)+E\left(Y_{2}\right)=7$
Since Y_{1} and Y_{2} are dependent:

$$
\begin{aligned}
\operatorname{Var}\left(Y_{1}+Y_{2}\right) & =\operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}\left(Y_{2}\right)+2 \operatorname{Cov}\left(Y_{1}, Y_{2}\right) \\
& =\frac{35}{12}+\frac{35}{12}+2\left(\frac{-7}{12}\right)=\frac{56}{12}=\frac{14}{3} \\
\operatorname{Cov}\left(Y_{1}, Y_{2}\right) & =E\left(Y_{1} Y_{2}\right)-E\left(Y_{1}\right) E\left(Y_{2}\right)=\frac{35}{3}-\frac{7}{2} \cdot \frac{7}{2}=-\frac{7}{12}
\end{aligned}
$$

Possible products

$$
\begin{array}{l|cccccc}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \square & 2 & 3 & 4 & 5 & 6 \\
2 & 2 & \square & 6 & 8 & 10 & 12 \\
3 & 3 & 6 & \square & 12 & 15 & 18 \\
4 & 4 & 8 & 12 & \square & 20 & 24 \\
5 & 5 & 10 & 15 & 20 & \square & 30 \\
6 & 6 & 12 & 18 & 24 & 30 & \square
\end{array} \quad \begin{aligned}
& \text { 3 ll } \\
& 3
\end{aligned} \quad \begin{aligned}
& \left.Y_{2}\right)=\frac{1}{15}(2+3+4+5 \\
&
\end{aligned}
$$

6. Sketch the pmfs of $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$. How does this help make sense of the means and variances that you found for these sums?

7. Generalize to rolls of n dice: find $E\left(X_{1}+\cdots+X_{n}\right)$ and $\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)$.

$$
E\left(X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=\frac{7 n}{2}
$$

$$
\text { by independence, } \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=\frac{35 n}{12}
$$

8. Similarly, generalize to choosing n balls from the urn. Find $E\left(Y_{1}+\cdots+Y_{n}\right)$ and $\operatorname{Var}\left(Y_{1}+\cdots+Y_{n}\right)$.

Now $n \leq 6$.
As before, $E\left(Y_{1}+\cdots+Y_{n}\right)=\frac{7 n}{2}$
However, now $\operatorname{Var}\left(Y_{1}+\cdots+Y_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right)$

$$
=\frac{35 n}{12}+2 \frac{n^{2}-n}{2}\left(-\frac{7}{12}\right)=\frac{35 n-7 n^{2}+7 n}{12}=\frac{42 n-7 n^{2}}{12}=\frac{7 n(6-n)}{12}
$$

Note that if $n=6$, the variance is zero.

