1. Let $X \sim \text{Unif}[-1,1]$ and $Y = X^2$.

(a) Compute E(X), E(Y), and E(XY). Does E(XY) = E(X)E(Y)?

$$E(X) = O, \qquad E(Y) = E(X^{2}) = \int_{-1}^{1} x^{2} \cdot \frac{1}{2} dx = \frac{1}{6} x^{3} \Big|_{-1}^{1} = \frac{1}{3}$$
$$E(XY) = E(X^{3}) = \int_{-1}^{1} x^{3} \cdot \frac{1}{2} dx = \frac{1}{8} x^{4} \Big|_{-1}^{1} = O$$
$$Yes, \quad E(XY) = E(X) E(Y)$$

(b) Are X and Y independent? Why or why not?

No: the value of X determines Y.

ANOTHER EXAMPLE: $U \sim Unif[0, 2\pi]$, X = cos(U), Y = sin(U)

- **I.** Two standard, fair dice are rolled. Let X_1 and X_2 be the numbers that appear on the dice.
- **II.** An urn contains balls labeled 1, 2, 3, 4, 5, 6. Let Y_1 and Y_2 be the numbers on two balls drawn without replacement from the urn.
- 2. What is the distribution of X_i ? How about the distribution of Y_i ?

X; and Y; are both uniformly distributed on {1, 2, 3, 4, 5, 6}.

3. What are $E(X_i)$ and $Var(X_i)$? How about $E(Y_i)$ and $Var(Y_i)$?

$$E(X_{i}) = \frac{7}{2}, \qquad E(X_{i})^{2} = \frac{1}{6}(1+9+9+16+25+36) = \frac{91}{6}$$
$$Var(X_{i}) = \frac{91}{6} - (\frac{7}{2})^{2} = \frac{35}{12}$$

Since X; and Y: have the same distribution,

$$E(Y_i) = \frac{7}{2}$$
 and $Var(Y_i) = \frac{35}{12}$

4. What are $E(X_1 + X_2)$ and $Var(X_1 + X_2)$?

By linearity,
$$E(X_1 + X_2) = E(X_1) + E(X_2) = 7$$

Since X_1 and X_2 are independent,
 $Var(X_1 + X_2) = Var(X_1) + Var(X_2) = \frac{35}{6}$

5. What and $E(Y_1 + Y_2)$ and $Var(Y_1 + Y_2)$?

By linearity,
$$E(Y_1 + Y_2) = E(Y_1) + E(Y_2) = 7$$

Since Y_1 and Y_2 are dependent:
 $Var(Y_1 + Y_2) = Var(Y_1) + Var(Y_2) + 2 Cov(Y_1, Y_2)$
 $= \frac{35}{12} + \frac{35}{12} + 2(\frac{-7}{12}) = \frac{56}{12} = \frac{14}{3}$
 $Cov(Y_1, Y_2) = E(Y_1 Y_2) - E(Y_1)E(Y_2) = \frac{35}{3} - \frac{7}{2} \cdot \frac{7}{2} = -\frac{7}{12}$

Possible products:

6. Sketch the pmfs of $X_1 + X_2$ and $Y_1 + Y_2$. How does this help make sense of the means and variances that you found for these sums?

7. Generalize to rolls of *n* dice: find $E(X_1 + \dots + X_n)$ and $Var(X_1 + \dots + X_n)$.

$$E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = \frac{7n}{2}$$

by independence,
$$Var(X_1 + \dots + X_n) = Var(X_1) + \dots + Var(X_n) = \frac{35n}{12}$$

8. Similarly, generalize to choosing *n* balls from the urn. Find $E(Y_1 + \dots + Y_n)$ and $Var(Y_1 + \dots + Y_n)$.

Now
$$n \le 6$$
.
As before, $E(Y_1 + \dots + Y_n) = \frac{7n}{2}$
However, now $Var(Y_1 + \dots + Y_n) = \sum_{i=1}^n Var(Y_i) + 2 \sum_{i \le j} Cov(Y_i, Y_j)$
 $= \frac{35n}{12} + 2 \frac{n^2 - n}{2} (-\frac{7}{12}) = \frac{35n - 7n^2 + 7n}{12} = \frac{42n - 7n^2}{12} = \frac{7n(6-n)}{12}$

Note that if n=6, the variance is zero.