1. Let $X \sim \operatorname{Unif}[-1,1]$ and $Y=X^{2}$.
(a) Compute $E(X), E(Y)$, and $E(X Y)$. Does $E(X Y)=E(X) E(Y)$?
(b) Are X and Y independent? Why or why not?

Consider the following two scenarios:
I. Two standard, fair dice are rolled. Let X_{1} and X_{2} be the numbers that appear on the dice.
II. An urn contains balls labeled $1,2,3,4,5,6$. Let Y_{1} and Y_{2} be the numbers on two balls drawn without replacement from the urn.
2. What is the distribution of X_{i} ? How about the distribution of Y_{i} ?
3. What are $E\left(X_{i}\right)$ and $\operatorname{Var}\left(X_{i}\right)$? How about $E\left(Y_{i}\right)$ and $\operatorname{Var}\left(Y_{i}\right)$?
4. What are $E\left(X_{1}+X_{2}\right)$ and $\operatorname{Var}\left(X_{1}+X_{2}\right)$?
5. What are $E\left(Y_{1}+Y_{2}\right)$ and $\operatorname{Var}\left(Y_{1}+Y_{2}\right)$?
6. Sketch the pmfs of $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$. How does this help make sense of the means and variances that you found for these sums?
7. Generalize to rolls of n dice: find $E\left(X_{1}+\cdots+E_{n}\right)$ and $\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)$.
8. Similarly, generalize to choosing n balls from the urn. Find $E\left(Y_{1}+\cdots+Y_{n}\right)$ and $\operatorname{Var}\left(Y_{1}+\cdots+Y_{n}\right)$.

