1. Let X and Y have joint pdf $f(x, y)=6 x y^{2}$ for $0 \leq x \leq 1$ and $0 \leq y \leq 1$.
(a) Sketch the marginal pdfs $f_{X}(x)$ and $f_{Y}(y)$. What would you estimate to be the means $E(X)$ and $E(Y)$?

Compute the marginal pdf:

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{1} 6 x y^{2} d y=\left.2 x y^{3}\right|_{y=0} ^{y=1}=2 x \text { for } 0 \leq x \leq 1 \\
& f_{Y}(y)=\int_{0}^{1} 6 x y^{2} d x=\left.3 x y^{2}\right|_{x=0} ^{x=1}=3 y^{2} \text { for } 0 \leq y \leq 1
\end{aligned}
$$

sketch the marginal pdfs:

(b) Compute $E(X)$ and $E(Y)$.

$$
\begin{array}{llll}
f_{x}(x)=2 x, & 0 \leq x \leq 1, & \text { so } & E(X)=\int_{0}^{1} x \cdot 2 x d x=\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=\frac{2}{3} \\
f_{y}(y)=3 y^{2}, & 0 \leq y \leq 1, & \text { so } & E(Y)=\int_{0}^{1} y \cdot 3 y^{2} d y=\left.\frac{3}{4} y^{4}\right|_{0} ^{1}=\frac{3}{4}
\end{array}
$$

(c) Compute $E(X+Y)$ in two different ways.
I. $E(X+Y)=E(X)+E(Y) \leftarrow$ linearity of expected value

$$
E(X+Y)=E(X)+E(Y)=\frac{2}{3}+\frac{3}{4}=\frac{17}{12}
$$

II. $\quad E(X+Y)=\int_{0}^{0} \int_{1}^{1}(x+y) 6 x y^{2} d y d x \leftarrow$ expected value of a function of X and Y

$$
E(X+Y)=\int_{0}^{1} \int_{0}^{1}(x+y) 6 x y^{2} d y d x=\frac{17}{12}
$$

$$
\text { Mathematica: Integrate }[(x+y) 6 x y^{\wedge} 2, \underbrace{\{x, 0,1\}}_{\text {outer bounds }}, \underbrace{\{y, 0,1\}}_{\text {inner bounds }}]
$$

(d) Now compute $E(X Y)$.

$$
E(X Y)=\int_{0}^{1} \int_{0}^{1}(x y) 6 x y^{2} d y d x=\frac{1}{2}
$$

Note that for this problem, $E(X Y)=E(X) E(Y)$.
(e) What are the values of $\operatorname{Cov}(X, Y)$ and $\operatorname{Corr}(X, Y)$? (Try to do this without evaluating any more integrals.)

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{2}-\frac{2}{3} \cdot \frac{3}{4}=0 \\
& \operatorname{Cor}(X, Y)=0
\end{aligned}
$$

2. Let X and Y have joint pdf $f(x, y)=3 x+3 y$ for $0 \leq x, 0 \leq y$, and $x+y \leq 1$.
(a) Sketch the joint pdf and verify that the volume underneath is 1. volume:

$$
\int_{0}^{1} \int_{0}^{1-x}(3 x+3 y) d y d x=1
$$

note the bounds of integration
$0 \leq x \leq 1, \quad 0 \leq y \leq 1-x$

 To compute the integral using Mathematic: Integrate $[3 x+3 y,\{x, 0,1\},\{y, 0,1-x\}]$
(b) What values of X and Y are most likely? What values are not so likely?
X and Y are likely to have a sum close to 1.
X and Y are not likely to both be near zero.
(c) Compute the following, using technology to evaluate integrals:

- $E(X+Y) \quad E(X+Y)=\int_{0}^{1} \int_{0}^{1-x}(x+y)(3 x+3 y) d y d x=\frac{3}{4}$

Integrate $[(x+y)(3 x+3 y),\{x, 0,1\},\{y, 0,1-x\}]$

- $E(X Y) \quad E(X Y)=\int_{0}^{1} \int_{0}^{1-x}(x y)(3 x+3 y) d y d x=\frac{1}{10}$
- $E(X) \quad f_{x}(x)=\int_{0}^{1-x}(3 x+3 y) d y=\frac{3}{2}\left(1-x^{2}\right), \quad 0 \leq x \leq 1$

$$
E(X)=\int_{0}^{1} x \cdot \frac{3}{2}\left(1-x^{2}\right) d x=\frac{3}{8}
$$

- $E(Y) \quad f_{Y}(y)=\int_{0}^{1-y}(3 x+3 y) d x=\frac{3}{2}\left(1-y^{2}\right), \quad 0 \leq y \leq 1$,

$$
E(Y)=\int_{0}^{1} y \cdot \frac{3}{2}\left(1-y^{2}\right) d y=\frac{3}{8}
$$

(d) What is $\operatorname{Cov}(X, Y)$?

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{10}-\frac{3}{8} \cdot \frac{3}{8}=\frac{-13}{320}
$$

3. How do $E(X)$ and $E(Y)$ relate to $E(X+Y)$ and $E(X Y)$? Does independence play a role?
$E(X+Y)=E(X)+E(Y)$ by linearity of expectation.
If X and Y are independent, then $E(X Y)=E(X) E(Y)$.
(The converse is not true!)
