From last time
(\#2) X and Y uniformly distributed an a unit square
 joint density: $f\left(x, y_{1}\right)= \begin{cases}1 & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}$
(C) $P(X \leq I)=\iint_{R} f(x, y) d A=\iint_{R} 1 d A=$ Area $(R)=\frac{1}{2}$
first cons
$x=y$
(d) X and y are independent: $\quad f(x, y)=f_{x}(x) f_{y}(y)$

$$
1=1 \cdot 1
$$

(1) X and y have joint pdf $f(x, y)=6 x y^{2}$ for $0 \leq x \leq 1,0 \leq y \leq 1$
 marginal pdf:

$$
\begin{aligned}
& f_{x}(x)=\int_{0}^{1} 6 x y^{2} d y=2 x \text { for } 0 \leq x \leq 1 \\
& f_{y}(y)
\end{aligned}=\int_{0}^{1} 6 x y^{2} d x=\left\{\begin{array}{l}
\text { for } \\
\\
\end{array}=3 y^{2} \text { for } 0 \leq y \leq 1 \quad 0,75\right\}
$$

(2) $0 \leq x, 0 \leq y, x+y \leq 1$

$$
\begin{aligned}
& \rightarrow x+y=1 \\
& y=1-x \\
& \int_{0}^{1} \int_{0}^{1-x}(3 x+3 y) d y d x=1 \\
& \int_{0}^{1} \int_{0}^{1-y}(3 x+3 y) d x d y=1
\end{aligned}
$$

Expected Value:

$$
E(h(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f(x, y) d y d x
$$

Covariance:

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E(X Y)-E(X) E(Y)
$$

Correlation:

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}
$$

