1. A cafeteria has three meal options: pizza, burgers, and salad bar. Three students each choose one option independently at random (equally likely to choose any option). Let X be the number (of the 3) who choose pizza, and let Y be the number who choose the salad bar.
(a) What is the joint emf of X and Y ? What are the marginal pms of X and Y ?

(b) Are X and Y independent? Why or why not?

No, since knowledge of one affects the probabilities of the other.
2. Suppose a particle is randomly located in the square $0 \leq x \leq 1,0 \leq y \leq 1$. That is, if two regions within the square have equal area, then the particle is equally likely to be in either region. Let (X, Y) be the coordinates of the particle.
(a) What is the joint density function of X and Y ?

$$
\begin{array}{r}
\text { If Area }(A)=\text { Area }(B) \text {, then the particle is equally } \\
\text { likely to be in } A \text { or } B . \\
\text { Thus, } P((X, Y) \in A)=k \text {. Area }(A)=\iint_{A} f(x, y) d A
\end{array}
$$

(b) Find $P(X \leq 0.2,0.1 \leq Y \leq 0.5)$.

$$
\begin{gathered}
P(X \leq 0.2,0.1 \leq Y \leq 0.5)=\int_{0.1}^{0.5} \int_{0}^{0.2} f(x, y) d x d y \\
=(0.2)(0.4)(1)=0.08
\end{gathered}
$$

(c) Find $P(X \leq Y)$.

$$
\begin{gathered}
P(X \leq Y)=\iint_{A} 1 d A=\frac{1}{2} \\
=\int_{0}^{1} \int_{x}^{1} 1 d y d x
\end{gathered}
$$

(d) Are X and Y independent? Why or why not?

$$
\text { Yes: } f(x, y)=f_{x}(x) f_{y}(y) \quad \text { for } \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \text {. }
$$

3. Let X and Y have joint $\operatorname{pdf} f(x, y)=6 x y^{2}$ for $0 \leq x \leq 1$ and $0 \leq y \leq 1$.
(a) Verify that $f(x, y)$ is a joint pdf.

$$
\begin{aligned}
f(x, y) \geq 0 \quad \text { for } & 0 \leq x \leq 1,0 \leq y \leq 1 \text { and } \\
\int_{0}^{1} \int_{0}^{1} 6 x y^{2} d x d y & =6 \int_{0}^{1} x d x \int_{0}^{1} y^{2} d y \\
= & 6\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)=1
\end{aligned}
$$

(b) What is $f_{X}(x)$?

$$
f_{x}(x)=\int_{0}^{1} 6 x y^{2} d y=\left.2 x y^{3}\right|_{y=0} ^{y=1}=2 x \text { for } 0 \leq x \leq 1
$$

(c) What is $P(X \leq Y)$?

$$
\begin{gathered}
P(X \leq Y)=\int_{0}^{1} \int_{x}^{1} 6 x y^{2} d y d x=\int_{0}^{1}\left(2 x-2 x^{4}\right) d x=1-\frac{2}{5}=\frac{3}{5} \\
\int_{x}^{1} 6 x y^{2} d y=\left.2 x y^{3}\right|_{y=x} ^{y=1}=2 x-2 x^{4}
\end{gathered}
$$

(d) Are X and Y independent? Why or why not?

$$
\begin{aligned}
f_{y}(y) & =\int_{0}^{1} 6 x y^{2} d x=\left.3 x^{2} y^{2}\right|_{x=0} ^{x=1}=3 y^{2} \\
\text { Yes: } \quad f(x, y) & =f_{x}(x) f_{y}(y) \\
6 x y^{2} & =(2 x)\left(3 y^{2}\right) \quad \text { for } 0 \leq x \leq 1, \quad 0 \leq y \leq 1
\end{aligned}
$$

