1. Let X have density given by $f_{X}(x)=\left\{\begin{array}{cc}x+1 & \text { if }-1 \leq x \leq 0, \\ 1-x & \text { if } 0<x \leq 1, \\ 0 & \text { otherwise }\end{array}\right.$
(a) Sketch a graph of the pdf $f_{X}(x)$.

(b) Sketch a graph of the $\operatorname{cdf} F_{X}(x)$. Then find a formula for $F_{X}(x)$.

$$
F_{x}(x)=\int_{-1}^{x} f_{x}(t) d t=\left\{\begin{array}{l}
\int_{-1}^{x}(t+1) d t=\left[\frac{1}{2} t^{2}+t\right]_{-1}^{x}=\frac{x^{2}}{2}+x+\frac{1}{2} \quad \text { if }-1 \leq x \leq 0 \\
\frac{1}{2}+\int_{0}^{x}(1-t) d t=\frac{1}{2}+\left[t-\frac{1}{2} t^{2}\right]_{0}^{x}=\frac{1}{2}+x-\frac{x^{2}}{2} \quad \text { if } 0 \leq x \leq 1
\end{array}\right.
$$

(c) Sketch the inverse of $F_{X}(x)$. Then find a formula for the inverse of $F_{X}(x)$.

To sketch the inverse,
flip F_{x} across the
line $y=x$.

To find a formula for F_{x}^{-1}, we must consider each piece of F_{x} separately. Let $u=F_{x}(x)$ for $-1 \leq x \leq 1$.

If $-1 \leq x \leq 0$, then $0 \leq u \leq \frac{1}{2}$.

$$
\text { If } 0<x \leq 1 \text {, then } \frac{1}{2}<u \leq 1 \text {. }
$$

In this case: $u=\frac{x^{2}}{2}+x+\frac{1}{2}$

$$
\text { In this case: } u=\frac{1}{2}+x-\frac{x^{2}}{2}
$$

$$
2 u=x^{2}+2 x+1
$$

$$
-2 u=-1-2 x+x^{2}
$$

$$
\begin{gathered}
\begin{array}{c}
2 u=x^{2}+2 x+1 \\
0=x^{2}+2 x+1-2 u
\end{array} \\
\text { so: } x=\frac{-2 \pm \sqrt{4-4(1-2 u)}}{2}=-1+\sqrt{2 u} \left\lvert\, \begin{array}{rl}
-2 u=-1-2 x+x^{2} \\
0 & 0=x^{2}-2 x-1+2 u
\end{array}\right. \\
\text { Thus, the inverse of } u=F_{x}(x) \text { is: } \\
\qquad F_{x}^{-1}(u)=\left\{\begin{array}{ccc}
-1+\sqrt{2 u-4(2 u-1)} \\
2 & \text { if } & 0 \leq u \leq \frac{1}{2} \\
1-\sqrt{2-2 u} & \text { if } & \frac{1}{2}<u \leq 1
\end{array}\right.
\end{gathered}
$$

(d) Write code to simulate values of X. Simulate thousands of values and make a histogram of the results.

```
Mathematica:
simX[] := Module[{},
    u = RandomReal[];
    If[u\leq1/2,x = -1+Sqrt[2u],x=1-Sqrt[2-2u]];
    Return[x]
```

] $\left.\quad \begin{array}{l}\text { ovals }=\text { replicate (10000, } \\ \text { hist }(x v a l s, ~ f r e q=F A L S E) ~\end{array}\right)$

Here are sample histograms from 10,000 simulations each:


```
D. simX <- function(){
    u = runif(1)
    if(u <= 0.5){
        return(-1 + sqrt(2*u))
    } #else
    return(1 - sqrt(2 - 2*u))
}
```

Specifically, simulate a random variable X_{1}, which gives the position of the particle at time 1 . Simulate another random variable X_{2}; the position of the particle at time 2 is $X_{1}+X_{2}$. Simulate another random variable X_{3}; the position of the particle at time 3 is $X_{1}+X_{2}+X_{3}$. Continue in this manner to simulate the position of the particle for hundreds of time steps.
(a) Simulate the Brownian motion described above. Make a plot showing the position of your simulated particle over time.

(b) Use simulation to answer the question: What is the average number of time steps until the particle's position is at least ten units from the origin?

```
    Mathematica:
ln[10]:= timeToTen[] := Module[{pos = 0, time = 0},
        While[Abs[pos] < 10,
        pos += simX[];
        time += 1
        ];
        Return [time]
    ]
In[11]:= timeToTen[]
Out[11]= 156
In[14]:= tenVals = Table[timeToTen[], 1000];
ln[15]:= Mean[tenVals] // N
Out[15]= 646.943
    ^ Your answer will vary
A Your answer will vary
```

```
    R:
```

 # how much time until distance 10 from origin?
    ```
```

```
    # how much time until distance 10 from origin?
```

```
```

