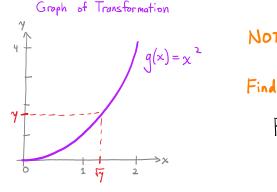
1. Let *X* have density $f_X(x) = \frac{x}{2}$ for $0 \le x \le 2$, and let $Y = X^2$. What is the density of *Y*?

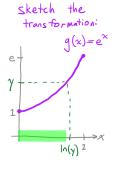


NOTE: Y takes values
$$0 \le \gamma \le 4$$

Find cdf of Y: for $\gamma \in [0, 4]$:
 $F_{Y}(\gamma) = P(Y \le \gamma) = P(X \le \sqrt{\gamma})$
 $= \int_{0}^{\sqrt{\gamma}} \frac{x}{2} dx = \frac{x^{2}}{4} \Big|_{0}^{\sqrt{\gamma}} = \frac{\gamma}{4} - 0 = \frac{\gamma}{4}$

Differentiate to obtain the pdf of Y: $f_{Y}(y) = \frac{d}{dy}F_{Y}(y) = \frac{d}{dy}(\frac{Y}{4}) = \frac{1}{4}$ for $0 \le y \le 4$

2. Let *X* have density $f_X(x) = 2x$ for $0 \le x \le 1$, and let $Y = e^X$. What is the density of *Y*?



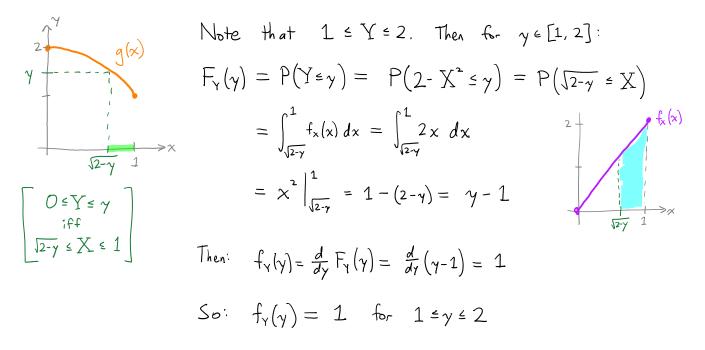
find the cdf of Y: for $y \in [1, e]$, $F_{Y}(y) = P(Y \in y) = P(e^{X} \in y) = P(\overline{X} \leq h(y))$ $= \int_{0}^{h_{Y}} 2x \ dx = x^{2} \Big|_{0}^{h_{Y}} = (\ln_{Y})^{2}$ $h_{Y}(x) = \int_{0}^{h_{Y}} 2x \ dx = x^{2} \Big|_{0}^{h_{Y}} = (\ln_{Y})^{2}$

differentiate to obtain the pdf of Y:

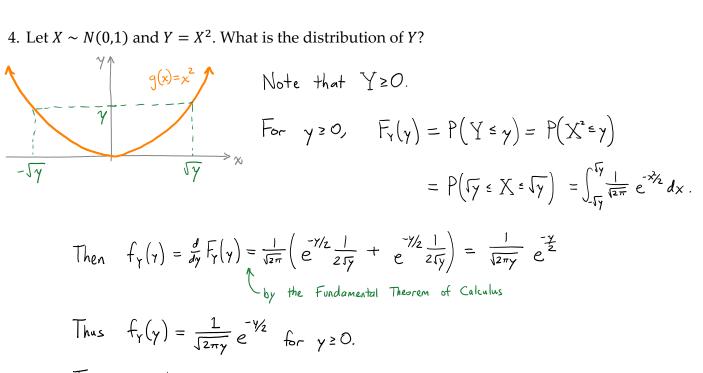
$$f_{\gamma}(\gamma) = \frac{d}{d\gamma} F_{\gamma}(\gamma) = \frac{d}{d\gamma} (\ln \gamma)^{2} = 2 \ln(\gamma) \cdot \frac{1}{\gamma}$$

$$f_{\gamma}(\gamma) = \frac{2}{\gamma} \ln(\gamma) \quad \text{for} \quad \underbrace{1 \leq \gamma \leq e}_{\text{bounds are important}}$$

Or use the Transformation Theorem: $g(x) = e^{\chi}$, which is strictly increasing on $0 \le \chi \le 1$ inverse is $h(y) = \ln \gamma$, which is differentiable thus: $f_{\chi}(y) = f_{\chi}(h(y)) | h'(y) = 2(\ln y) | \frac{1}{\gamma} | = \frac{2}{\gamma} \ln y$ for $1 \le y \le e$ 3. Let *X* have density $f_X(x) = 2x$ for $0 \le x \le 1$, and let $Y = 2 - X^2$. What is the density of *Y*?



4. Let $X \sim N(0,1)$ and $Y = X^2$. What is the distribution of *Y*?



This is the pdf of the Gamma
$$(\alpha = \frac{1}{2}, \beta = 2)$$
 distribution,
which is also the chi-square distribution with 1 degree of freedom.