Worksheet Solutions
Math 262 « 1 November 2023

1. Suppose that the time between goals in a hockey game is exponentially distributed with mean 18 minutes
(ignore timeouts and stoppages). Let X be the time from the start of the game until the second goal occurs.
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@) P f(x; 2, I%)
T f } p4
o 122

(b) What is the probability that the second goal occurs less than 30 minutes after the game starts?

Then P(¥ < 20) = pjmwbo/ 2, =) = 0.496

2. Suppose that a call center receives calls according to a Poisson distribution at a rate of 2 calls per minute.
Let Y be the time between 10:00am and the 5" call received after 10:00am.
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(a) Sketch the pdf of Y.

(b) What are the mean and variance of Y?
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(c) Whatis P(Y < 1)? !
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3. For large a, the gamma distribution converges to a normal distribution with mean af and variance a82.
Investigate this in the case that § = 1.

(a) Let X ~ Gamma(10, 1). Use technology to compute P(X < x) for various values of x.
Table [CDF [GammaDistribution[1@, 1], x], {x, 4, 16, 2}] //N

{©.00813224, 0.083924, ©.283376, ©.54207, 0.757608, 6.890601, ©.956702}

(b) LetZ ~ N (10, \/Tﬁ). Use technology to compute P(Z < x) for the same values of x that you used in
part (a). Do you find the probabilities to be close to what you found in part (a)?
Table [CDF [NormalDistribution[1©, Sqrt[106]], x], {x, 4, 16, 2}] // N

{©.0288898, ©.102952, ©.263545, ©.5, ©.736455, ©0.897048, ©.97111}

Tlnese, Pr‘ol:aba”i},&j ace  Somewhat close fo those in Par+_ (a)_

(c) Now choose a larger value of «, such as a = 100. Compute some probabilities to verify
that X ~ Gamma(q, 1) has nearly the same distribution as Z ~ N(a, \/E)

g = Table [CDF [GammaDistribution[1@@, 1], x], {x, 80, 140, 10}] //N

{©.0171083, ©.158221, ©.513299, ©.841721, ©.972136, ©.99725, ©.999839}

n = Table [CDF [NormalDistribution[1l@@, 10], x], {x, 80, 140, 10}] // N

{©.0227501, ©.158655, ©.5, ©.841345, ©.97725, ©.99865, ©.999968}

g/n

{©.752009, ©.997263, 1.0266, 1.00045, ©.994767, ©.998598, ©.999871};

4. The skewness coefficient of the distribution of random variable X is defined
E[(X - 7]
T
How could you compute the skewness of X ~ Gamma(a, 8)? Then compute the skewness
of X.
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BONUS: Show that T (5) = V7.
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