1. Suppose that the time between goals in a hockey game is exponentially distributed with mean 18 minutes (ignore timeouts and stoppages). Let X be the time from the start of the game until the second goal occurs.

(a) Sketch the pdf of X.

(b) What is the probability that the second goal occurs less than 30 minutes after the game starts?

$$
\text { Then } P(X<30)=\operatorname{pgamma}\left(30,2, \frac{1}{18}\right)=0.496
$$

2. Suppose that a call center receives calls according to a Poisson distribution at a rate of 2 calls per minute. Let Y be the time between 10:00 am and the $5^{\text {th }}$ call received after 10:00 am.

$$
\begin{aligned}
& \text { Time between calls is Exp }(2) \text {. } \\
& Y \sim \operatorname{Gamma}\left(5, \frac{1}{2}\right) \text { is the sum of five Exp }(2) \text { rvs. }
\end{aligned}
$$

(a) Sketch the pdf of Y.

(b) What are the mean and variance of Y ?

$$
\begin{aligned}
& E(Y)=5 \cdot \frac{1}{2}=\frac{5}{2} \\
& \operatorname{Var}(Y)=5\left(\frac{1}{2}\right)^{2}=\frac{5}{4}
\end{aligned}
$$

(c) What is $P(Y<1)$?

$$
\int_{0}^{1} \frac{4}{3} y^{4} e^{-2 y} d y=\operatorname{pgamma}(1,5,2)=0.0526
$$

3. For large α, the gamma distribution converges to a normal distribution with mean $\alpha \beta$ and variance $\alpha \beta^{2}$. Investigate this in the case that $\beta=1$.
(a) Let $X \sim \operatorname{Gamma}(10,1)$. Use technology to compute $P(X \leq x)$ for various values of x.
```
Table[CDF[GammaDistribution[10, 1], x], {x, 4, 16, 2}] // N
{0.00813224, 0.083924, 0.283376, 0.54207, 0.757608, 0.890601, 0.956702}
```

(b) Let $Z \sim N(10, \sqrt{10})$. Use technology to compute $P(Z \leq x)$ for the same values of x that you used in part (a). Do you find the probabilities to be close to what you found in part (a)?

Table[CDF[NormalDistribution [10, Sqrt[10]], $x],\{x, 4,16,2\}] / / N$
$\{0.0288898,0.102952,0.263545,0.5,0.736455,0.897048,0.97111\}$
These probabilities are somewhat close to those in part (a)
(c) Now choose a larger value of α, such as $\alpha=100$. Compute some probabilities to verify that $\mathrm{X} \sim \operatorname{Gamma}(\alpha, 1)$ has nearly the same distribution as $Z \sim N(\alpha, \sqrt{\alpha})$.

```
g = Table[CDF[GammaDistribution[100, 1], x], {x, 80, 140, 10}] // N
{0.0171083, 0.158221, 0.513299, 0.841721, 0.972136, 0.99725, 0.999839}
n=Table[CDF[NormalDistribution[100, 10], x], {x, 80, 140, 10}] // N
{0.0227501, 0.158655, 0.5, 0.841345, 0.97725, 0.99865, 0.999968}
```

g/n
$\{0.752009,0.997263,1.0266,1.00045,0.994767,0.998598,0.999871\}$
4. The skewness coefficient of the distribution of random variable X is defined

$$
\gamma=\frac{E\left[(X-\mu)^{3}\right]}{\sigma^{3}}
$$

How could you compute the skewness of $X \sim \operatorname{Gamma}(\alpha, \beta)$? Then compute the skewness of X.

$$
\begin{aligned}
& \text { option 1: moments } f_{X}(t)=(1-\beta t)^{-\alpha} \\
& \qquad \begin{array}{l}
E(X)=\alpha \beta, \quad E\left(X^{2}\right)=\alpha(\alpha+1) \beta^{2}, \quad E\left(X^{3}\right)=\alpha(\alpha+1)(\alpha+2) \beta^{3} \\
\text { From March 18: } \gamma=\frac{E\left(X^{3}\right)-3 E\left(X^{2}\right) E(X)+2 E(X)^{3}}{\sigma^{3}} \\
\gamma
\end{array} \begin{array}{l}
\alpha(\alpha+1)(\alpha+2) \beta^{3}-3(\alpha \beta(\alpha+1))(\alpha \beta)+2 \alpha^{3} \beta^{3} \\
\left(\alpha \beta^{2}\right)^{3 / 2}
\end{array}=\frac{2}{\sqrt{\alpha}} \quad\left[\begin{array}{l}
\text { NoTE: The skewness } \\
\text { depends only on the } \\
\text { shape parameter } \alpha .
\end{array}\right]
\end{aligned}
$$

option 2: integrate $\quad \int_{0}^{\infty}(x-\alpha \beta)^{3} \frac{1}{\beta^{\alpha} T(\alpha)} x^{\alpha-1} e^{-x / \beta} d x=2 \beta^{3} \alpha$

$$
\text { so } \gamma=\frac{2 \beta^{3} \alpha}{\left(\alpha \beta^{2}\right)^{3 / 2}}=\frac{2}{\sqrt{\alpha}}
$$

option 3: Mathematic

Skewness [GammaDistribution [$\alpha, \beta]$]

$$
\frac{2}{\sqrt{\alpha}}
$$

BONUS: Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

$$
\begin{aligned}
& \Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x \\
& \Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} x^{-\frac{1}{2}} e^{-x} d x=\int_{0}^{\infty} \frac{\sqrt{2}}{y} e^{-y^{2} / 2} y d y=\sqrt{2} \int_{0}^{\infty} e^{-y^{2} / 2} d y=\sqrt{2} \cdot \frac{\sqrt{\pi}}{\sqrt{2}}=\sqrt{\pi} \\
& \text { substitute: } \begin{array}{lc}
y=\sqrt{2 x} & \text { standard normal } p^{2} d f: \\
x=\frac{y^{2}}{2} & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=1 \\
d x=y d y & \text { so } \int_{0}^{\infty} e^{-x^{2} / 2} d x=\frac{\sqrt{2 \pi}}{2}=\frac{\sqrt{\pi}}{\sqrt{2}}
\end{array}
\end{aligned}
$$

