GAMMA DISTRIBUTION
$X \sim \operatorname{Gamma}(\alpha, \beta)$ has pdf $f(x ; \alpha, \beta)=\left\{\begin{array}{cll}\frac{1}{\beta^{\alpha} T(\alpha)} x^{\alpha-1} e^{-x / p} & \text { if } & x>0 \\ 0 & \text { if } & x<0\end{array}\right.$
mean: $E(X)=\alpha \beta$
variance: $\operatorname{Var}(X)=\alpha \beta^{2}$
$m g f: \quad M_{x}(t)=\frac{1}{(1-\beta t)^{\alpha}}, \quad t<\frac{1}{\beta}$

If $\alpha=n$ an integer, then $X \sim \operatorname{Gamma}(n, \beta)$ gives the time until the $n^{t h}$ occurrance in a poisson process with rate $\frac{1}{\beta}$.
(1)

