EXPONENTIAL DISTRIBUTION
The times between events in a Poisson process are exponentially distributed.

- pdf: $f(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x} & x>0 \\ 0 & \text { otherwise. }\end{cases}$

-cd: $F(x)=\left\{\begin{array}{cl}1-e^{-\lambda x} & \text { for } x>0 \\ 0 & \text { otherwise. }\end{array}\right.$
- mean $E(X)=\frac{1}{\lambda} \quad \lambda=$ "rate"
- Variance: $\operatorname{Var}(X)=\frac{1}{\lambda^{2}} \quad \sigma_{x}=\frac{1}{\lambda}$
(3) exponential mgf

$$
\begin{aligned}
& X \sim \operatorname{Exp}(\lambda) \\
& M_{x}(t)=E\left(e^{t \bar{X}}\right)=\int_{0}^{\infty} \underbrace{e^{t x}}_{\text {values }} \cdot \underbrace{\lambda e^{-\lambda x}}_{\text {density }} d x=\lambda \int_{0}^{\infty} e^{t x} e^{-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{t x-\lambda x} d x=\lambda \int_{0}^{\infty} e^{x(t-\lambda)} d x=\left.\frac{\lambda}{t-\lambda} e^{x(t-\lambda)}\right|_{x=0} ^{\infty} \\
& \text { so integral } t<\lambda)=0-\frac{\lambda}{t-\lambda} e^{0(t-\lambda)}=\frac{-\lambda}{t-\lambda}=\frac{\lambda}{\lambda-t} \\
& M_{x}(t)=\frac{\lambda}{\lambda-t} \text { for } \quad t<\lambda
\end{aligned}
$$

Need: $t-\lambda<0$
(4) $\lambda=1$:

$$
\begin{aligned}
& M_{x}(t)=\frac{1}{1-t}=(1-t)^{-1} \\
& M_{x}^{\prime}(t)=-1(1-t)^{-2}(-1)=(1-t)^{-2} \\
& M_{x}^{\prime}(0)=(1-0)^{-2}=1=E(x) \\
& E\left(x^{2}\right), E\left(x^{3}\right), \ldots
\end{aligned}
$$

