1. Let Z be a standard normal random variable.
(a) What is $P(Z \leq 0.8)$?
$R: \operatorname{pnorm}(0.8,0,1)=0.788$

(b) What number c is such that $P(Z \leq c)=0.4$?
$R: \quad \operatorname{anorm}(0.4)=-0.253$

2. Let X be a normal random variable with mean 24 and standard deviation 2 .
(a) What is $P(23 \leq X \leq 25)$?
R : pnorm $(25,24,2)-\operatorname{pnorm}(23,24,2)=0.383$

(b) What number c is such that $P(X \geq c)=0.2$?
$R: \quad \operatorname{qnorm}(0.8,24,2)=25.68=c$ $\tau_{1-0.2}$

3. What is the probability that a normal random variable is within 1.5 standard deviations of its mean?

4. Suppose that a fair, 6 -sided die is rolled 1000 times. Use a normal distribution to approximate the probability that the number 6 appears between 150 and 200 times (inclusive).

Let $X \sim \operatorname{Bin}\left(1000, \frac{1}{6}\right)$ be the number of 6 s rolled.
Then $E(X)=\frac{1000}{6}$ and $\sigma(X)=\sqrt{\frac{5000}{36}} \approx 11.785$.
Then X is approximately $Z \sim N\left(\frac{1000}{6}, 11.8\right)$
$P(150 \leq X \leq 200) \approx P(150 \leq Z \leq 200)=0.919$
Binomial distribution
gives 0.92645

$$
\left[\begin{array}{c}
\text { Normal approximation to the binomial } \\
\text { distribution is "good" when } \\
n p \geq 10 \text { and } n(1-p) \geq 10
\end{array}\right]
$$

CONTINUITY CORRECTION: $P(149.5 \leq Z \leq 200.5)=0.925$
5. Let $f(x)$ denote the standard normal pdf. Estimate $f(1)$ using only the information in Table A. 3 in the text.

Table A. 3 gives $\Phi(z)=\int_{-\infty}^{z} f(x) d x$. That is, $f(x)=\Phi^{\prime}(x)$.
Thus:

$$
\begin{gathered}
f(1) \approx \frac{1}{2}\left(\frac{\Phi(1.01)-\Phi(1)}{0.01}+\frac{\Phi(1)-\Phi(0.99)}{0.01}\right)=\frac{\Phi(1.01)-\Phi(0.99)}{0.02}=\frac{0.8438-0.8389}{0.02} \\
=\frac{0.0049}{0.02}=0.245
\end{gathered}
$$

Compare with the value given by $R: \operatorname{dnorm}(1)=0.24197$
6. Let $f(x)$ denote the pdf of the $N(\mu, \sigma)$ distribution. Show that the points of inflection lie at $x=\mu \pm \sigma$. (Hint: differentiate twice with respect to x.)

$$
f^{\prime \prime}(x)=0 \Rightarrow \frac{1}{\sigma^{3} \sqrt{2 \pi}}=\frac{(x-\mu)^{2}}{\sigma^{s} \sqrt{2 \pi}} \Rightarrow \sigma^{2}=(x-\mu)^{2} \Rightarrow x-\mu= \pm \sigma \Rightarrow x=\mu \pm \sigma
$$

$$
\begin{aligned}
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \\
& f^{\prime}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot \frac{-(x-\mu)}{\sigma^{2}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \\
& f^{\prime \prime}(x)=\frac{-1}{\sigma^{3} \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}+\frac{(x-\mu)^{2}}{\sigma^{5} \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}=\frac{(x-\mu)^{2}-\sigma^{2}}{\sigma^{5} \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \\
& \text { Furthermore: }
\end{aligned}
$$

