The Normal Distribution

- Describes the distributions of many physical quantities (eeg. lengths, weights, measurements).
- Arises from the Central Limit Theorem.
- pdf of $X \sim N(\mu, \sigma): \quad f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$
- cdf of $X \sim N(0,1): \quad \Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y$

$$
5
$$

$$
e^{-x^{2}}
$$

- mgr of $X \sim N(0,1): \quad M_{x}(t)=e^{\mu t+\frac{\sigma^{2} t^{2}}{2}}$

