Let X be a continuous random variable with pdf $f(x)$.
discrete
Expected Value of X :

$$
\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x \quad \sum_{x} x \cdot p(x)
$$

$$
\ldots \text { of } h(X): \quad E(h(X))=\int_{-\infty}^{\infty} h(x) f(x) d x \quad \sum_{x} h(x) p(x)
$$

SUMS \Rightarrow INTEGRALS
VARIANCE OF X :

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

MOMENT GENERATING FUNCTION: $M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$ values densities

Problem 2:

If $t=0: \quad E\left(e^{0 . x}\right)=E(1)=1$

$$
M_{x}(t)=\left\{\begin{array}{ccc}
\frac{e^{\beta t}-e^{A t}}{f(B-A)} & \text { if } t \neq 0 \\
1 & \text { if } t=0
\end{array}\right.
$$

From \#1: $\quad U \sim$ Unit $[0,5]$

$$
\text { if } t \neq 0 \quad M_{u}(t)=\frac{e^{5 t}-e^{0 t}}{t(5-0)}=\frac{e^{5 t}-1}{5 t}
$$

$$
\begin{aligned}
& X \sim U_{\text {nf }}[A, B]
\end{aligned}
$$

$$
\begin{aligned}
V & =3 v+2 \\
M_{v}(t) & =e^{2 t} M_{u}(3 t)
\end{aligned}
$$

So $\quad M_{x}(t)=e^{2 t} M_{v}(3 t)=e^{2 t} \frac{e^{5(3 t)}-1}{5(3 t)}$

$$
M_{v}(t)=\frac{e^{11 t}-e^{2 t}}{15 t} \text { mgf of } U_{n} \neq[2,17] \text { so } V \sim U_{n} i[[2,17]
$$

Problem \#3:

