1. Let *X* be a continuous random variable with pdf

2. Suppose that a continuous random variable *X* has pdf f(x) = kx(4 - x) for $0 \le x \le 4$, and f(x) = 0 otherwise.

(a) Sketch the pdf of *X*. Then, without computing anything, sketch the cdf of *X*.

(b) What is the value of *k*?

Remember that the pdf must integrate to 1: $\int_{0}^{4} kx (4-x) dx = \frac{32}{3} k = 1, \quad \text{so} \quad k = \frac{3}{32}.$

(c) Find P(X > 3 or X < 1).

$$P(X > 3 \text{ or } X < 1) = \int_{0}^{1} f(x) dx + \int_{3}^{4} f(x) dx = 2 \int_{0}^{1} \frac{3}{32} x(4-x)$$

by symmetry of $f(x)$ about $x=2$
$$= \frac{3}{16} \left[2x^{2} - \frac{x^{3}}{3} \right]_{0}^{1} = \frac{3}{16} \left(2 - \frac{1}{3} \right) = \frac{5}{16}$$

- 3. Suppose that the cdf of a random variable *X* is $F(x) = 1 e^{-5x}$ for x > 0, and F(x) = 0 otherwise.
- (a) What is the pdf of *X*? Sketch both the pdf and the cdf.

(b) What is $P\left(\frac{1}{4} < X < \frac{1}{3}\right)$? Can you get this from *either* the cdf or the pdf?

cdf:
$$P(\frac{1}{4} < X < \frac{1}{3}) = F(\frac{1}{3}) - F(\frac{1}{4}) = (1 - e^{-\frac{5}{4}}) - (1 - e^{-\frac{5}{4}}) = e^{-\frac{5}{4}} - e^{-\frac{5}{3}} \approx 0.098$$

pdf: $P(\frac{1}{4} < X < \frac{1}{3}) = \int_{\frac{1}{4}}^{\frac{1}{3}} f(x) dx = \frac{5}{3}$ same

4. Random variable X has pdf $f(x) = \begin{cases} ax + bx^2 & 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$ Furthermore, $P\left(X < \frac{1}{2}\right) = \frac{3}{16}$. What is the median of X? We need: $\int_{b}^{1} (ax + bx^2) dx = \frac{a}{2} + \frac{b}{3} = 1$ $\Rightarrow 3a + 2b = 6$ $\int_{a}^{\frac{1}{2}} (ax + bx^2) dx = \frac{a}{2} \cdot \frac{1}{4} + \frac{b}{3} \cdot \frac{1}{8} = \frac{a}{8} + \frac{b}{24} = \frac{3}{16} \Rightarrow 3a + b = \frac{q}{2}$ Median: $\int_{a}^{1} (x + \frac{3}{2}x^2) dx = \frac{1}{2}y^2 + \frac{1}{2}y^3 = \frac{1}{2} \Rightarrow y^2 + y^3 = 1$

So we need
$$\eta^3 + \eta^2 - 1 = 0$$
, or $\eta \approx 0.755$
Exact: $\eta = \frac{1}{3} \left[-1 + \sqrt[3]{\frac{25}{3} - \frac{3\sqrt{69}}{2}} + \sqrt[3]{\frac{1}{2}(25 + 3\sqrt{69})} \right]$

5. Let *Y* be a random variable with pdf given by $f(y) = \begin{cases} \frac{y}{2} & \text{if } 0 \le y \le 2, \\ 0 & \text{otherwise.} \end{cases}$ (a) Find a value $\eta_{0.25}$ such that $P(Y \le \eta_{0.25}) = 0.25$.

(b) What is the median of *Y*?

