1. Let X be a continuous random variable with pdf

$$
f(x)=\left\{\begin{array}{cc}
x & 0 \leq x \leq 1 \\
2-x & 1 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Sketch the pdf of X.

(b) Without computing anything, sketch pdf of X.

The cd must look something
like this:

(c) What is $P(X<1.5)$?

Find the area under the pdf left of $x=1.5$.

$$
P(X<1.5)=\int_{0}^{1.5} f(x) d x=\frac{7}{8}
$$

(d) Find a value $\eta_{0.75}$ such that $P\left(X \leq \eta_{0.75}\right)=0.75$.

$$
\begin{array}{ll}
\text { Find } c \text { such } & \frac{c^{2}}{2}=\frac{1}{4} \\
\text { that } c \bigwedge^{45^{\circ}} & c^{2}=\frac{1}{2} \\
\text { has area } \frac{1}{4} . & c=\frac{\sqrt{2}}{2}
\end{array}
$$

(e) Give a formula for the pdf of X.

If $1 \leq x \leq 2$, then $F(x)=\underbrace{\frac{1}{2}}+\underbrace{\int_{1}^{x}(2-y) d y}_{P(1 \leq x \leq x)^{5}}=\frac{1}{2}+\left[2 y-\frac{1}{2} y^{2}\right]_{y=1}^{y=x}=2 x-\frac{x^{2}}{2}-1$

$$
\text { Thus: } \quad F(x)=\left\{\begin{array}{cll}
0 & \text { if } & x<0 \\
\frac{1}{2} x^{2} & \text { if } & 0 \leq x \leq 1 \\
2 x-\frac{x^{2}}{2}-1 & \text { if } & 1<x \leq 2 \\
1 & \text { if } & 2<x
\end{array}\right.
$$

2. Suppose that a continuous random variable X has $\operatorname{pdf} f(x)=k x(4-x)$ for $0 \leq x \leq 4$, and $f(x)=0$ otherwise.
(a) Sketch the pdf of X. Then, without computing anything, sketch the pdf of X.

(b) What is the value of k ?

Remember that the pdf must integrate to 1:

$$
\int_{0}^{4} k x(4-x) d x=\frac{32}{3} k=1 \text {, so } k=\frac{3}{32} \text {. }
$$

(c) Find $P(X>3$ or $X<1)$.

$$
\begin{gathered}
P(X>3 \text { or } X<1)=\int_{0}^{1} f(x) d x+\int_{3}^{4} f(x) d x=2 \int_{0}^{1} \frac{3}{32} x(4-x) \\
=\frac{3}{16}\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{3}{16}\left(2-\frac{1}{3}\right)=\frac{5}{16}
\end{gathered}
$$

3. Suppose that the cdf of a random variable X is $F(x)=1-e^{-5 x}$ for $x>0$, and $F(x)=0$ otherwise.
(a) What is the pdf of X ? Sketch both the pdf and the pdf.

Differentiate the cdf to find the pdf:

$$
f(x)=\frac{d}{d x} F(x)=\frac{d}{d x}\left(1-e^{-5 x}\right)=5 e^{-5 x} \text { for } x>0
$$

(b) What is $P\left(\frac{1}{4}<X<\frac{1}{3}\right)$? Can you get this from either the cdf or the pdf?
cdf: $\quad P\left(\frac{1}{4}<X<\frac{1}{3}\right)=F\left(\frac{1}{3}\right)-F\left(\frac{1}{4}\right)=\left(1-e^{-5 / 3}\right)-\left(1-e^{-5 / 4}\right)=e^{-5 / 4}-e^{-5 / 3} \approx 0.098$ pdf: $\quad P\left(\frac{1}{4}<X<\frac{1}{3}\right)=\int_{\frac{1}{4}}^{\frac{1}{3}} f(x) d x=\int_{\text {same }}$
4. Random variable X has pdf

$$
f(x)=\left\{\begin{array}{cl}
a x+b x^{2} & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Furthermore, $P\left(X<\frac{1}{2}\right)=\frac{3}{16}$. What is the median of X ?
We need: $\quad \int_{0}^{1}\left(a x+b x^{2}\right) d x=\frac{a}{2}+\frac{b}{3}=1 \quad \Rightarrow \quad 3 a+2 b=6$

$$
\int_{0}^{\frac{1}{2}}\left(a x+b x^{2}\right) d x=\frac{a}{2} \cdot \frac{1}{4}+\frac{b}{3} \cdot \frac{1}{8}=\frac{a}{8}+\frac{b}{24}=\frac{3}{16} \Rightarrow 3 a+b=\frac{9}{2}
$$

Median: $\quad \int_{0}^{\eta}\left(x+\frac{3}{2} x^{2}\right) d x=\frac{1}{2} \eta^{2}+\frac{1}{2} \eta^{3}=\frac{1}{2} \Rightarrow \eta^{2}+\eta^{3}=1$

$$
\begin{aligned}
& \text { So we need } \eta^{3}+\eta^{2}-1=0 \text {, or } \eta \approx 0.755 \\
& \text { Exact: } \eta=\frac{1}{3}\left[-1+\sqrt[3]{\frac{25}{3}-\frac{3 \sqrt{69}}{2}}+\sqrt[3]{\frac{1}{2}(25+3 \sqrt{69})}\right]
\end{aligned}
$$

5. Let Y be a random variable with pdf given by $f(y)=\left\{\begin{array}{ll}\frac{y}{2} & \text { if } 0 \leq y \leq 2, \\ 0 & \text { otherwise. }\end{array} \quad\left[\begin{array}{l}\text { This is a bonus problem } \\ \text { that wasn't on the } \\ \text { in-class worksheet. }\end{array}\right]\right.$
(a) Find a value $\eta_{0.25}$ such that $P\left(Y \leq \eta_{0.25}\right)=0.25$.

$$
\begin{gathered}
\frac{1}{4}=\int_{-\infty}^{\eta_{0.25}} f(y) d y=\int_{0}^{\eta_{0.25}} \frac{y}{2} d y=\left.\frac{y^{2}}{4}\right|_{0} ^{\eta_{0.25}}=\frac{\eta_{0.25}^{2}}{4} \\
\downarrow \\
1=\eta_{0.25} \quad \text { or use geometry } \rightarrow \underbrace{}_{1}
\end{gathered}
$$

(b) What is the median of Y ?

$$
b=\frac{3}{2}, a=1
$$

