1. The video for today presented a discrete-time queue simulation. At time 0 , the queue contains one individual. In each time interval, X individuals enter the queue and Y individuals exit the queue, where both X and Y are Poisson random variables with mean 5 .
(a) Modify the code so that the queue has a maximum size of 100 . That is, if 100 individuals are in the queue, no more may join until some leave.
```
\(R:\)
\# queue simulation as a function,
    \# with max queue size 100 ,
\# stops when queue is empty
queuesimulation <- function() \{
    queuesize <- 1
    time <- 0
    while (queuesize >0) \{
        \# individuals enter the queue
        \(\mathrm{x}<-\operatorname{rpois}(1,5)\)
            if(queuesize \(+x>100\) ) \{
                queueSize <- 100
            \} else \{
            queuesize <- queuesize + x
            \}
            \# individuals leave the queue
            \(y<-\operatorname{rpois}(1,5)\)
            if( \(y>\) queuesize) \(\{\)
                queuesize <- 0
            \} queueS
                queuesize <- queuesize - y
            \}
            \# increment time
            time <- time + 1
    \}
    return(time)
\}
\# estimate time at which queue is empty
times = replicate (1000, queuesimulation())
print(times).
print(mean(times))
```

Mathematica:
$\ln [1]=$ queueSim [] := Module [$\}$,
queueSize $=1$;
time $=0$;
While [que reSize > θ,
time += 1;
$\mathrm{x}=$ RandomVariate [PoissonDistribution [5]];
queueSize $=$ queueSize $+x$;
If [queueSize > 100, queueSize $=100$];
$y=$ RandomVariate [PoissonDistribution[5]];
If $[y>$ queueSize, queueSize $=0$, queueSize $=$ queueSize $-y]$;
(*Print["at time ",time," the queue contains: ",queueSize]*)
(*Print["time until the queue is empty: ",time];*)
Return [time]
1;
]
$\ln [2]=$ queue Sim[]
$n[2]=9$
out 12$]=17$
Out [2] $=17$
$\ln [3]=$ val $=$ Table [queueSim [], 10000]
$\ln (4)=$ Mean[vals] // N
$O u t[4]=52.3655$
$\ln [5]=$ StandardDeviation[vals] // N
Out $[5]=245.383$
(b) Let T be the first time at which the queue is empty. Estimate $E(T)$.

Averaging over many simulations, we find $E(T) \approx 52$.
(c) Let Z be the first time at which the size of the queue is first reaches 20. Estimate $E(Z)$.

$$
\text { Averaging over many simulations, we find } E(Z) \approx 54 \text {. }
$$

2. Suppose that C, the number of chips awarded in the game Plinko, has the following distribution:

c	1	2	3	4	5
$p(c)$.03	.15	.35	.34	.13

What are two ways of simulating values of C in \mathbf{R} ?

$$
\begin{aligned}
& \text { chips <- NULL } \\
& \text { for(i in 1:10000)\{ } \\
& \text { u <- runif(1) } \\
& \text { if(u<0.03)\{ } \\
& x<-1 \\
& \text { \} else if(u<0.18)\{ } \\
& x<-2 \\
& \text { \} else if(u<0.53)\{ } \\
& x<-3 \\
& \text { \} else if(u<0.87)\{ } \\
& x<-4 \\
& \text { \} else\{ } \\
& x<-5 \\
& \text { \} } \\
& \text { \#print(x) } \\
& \text { chips[i] <- x }
\end{aligned}
$$

2. Use sample()
sample (elements, size, replace=FALSE, prob $=$ NULL) prin
nchips <- 1:5
pchips <- c(.03,.15,.35,.34,.13)
sample(nchips, 1, TRUE, pchips)
Use simulation to estimate the mean and standard deviation of C.

$$
\text { true mean: } 3.39 \quad \text { SD: } 0.978
$$

3. Suppose that X, the winnings for one chip in Plinko, has the following distribution:

x	$\$ 0$	$\$ 100$	$\$ 500$	$\$ 1000$	$\$ 10,000$
$p(x)$.39	.03	.11	.24	.23

Write a simulation of Plinko, taking into account both the number of chips a contestant earns and the amount of money won on each chip.

```
winnings <- NULL
nchips <- 1:5
pchips <- c(.03,.15,.35,.34,.13)
nwin <- c(0,100,500,1000,10000)
pwin <- c(.39,.03,.11,.24,.23)
for(i in 1:100){
    chips <- sample(nchips, 1, TRUE, pchips) #number of chips the contestant earns
    amounts <- sample(nwin, chips, TRUE, pwin) #amounts won from each chip
    winnings[i] <- sum(amounts)
}
hist(winnings)
```

What is the probability that a contestant wins more than $\$ 11,000$?

```
sum(winnings > 11000)
mean(winnings > 11000)
```

$$
\text { probability is about } 0.3
$$

