1. Let $X \sim \operatorname{Geometric}(p)$. Compute the $\operatorname{mgf} M_{X}(t)$. Try to write the mgf without a summation.

$$
\begin{aligned}
M_{x}(t) & =E\left(e^{t x}\right)=\sum_{x=1}^{\infty} e^{t x} \underbrace{\frac{(1-p)^{x-1} p}{p(x=x)}}=\frac{p}{1-p} \sum_{x=1}^{\infty} e^{t x}(1-p)^{x} \\
& =\frac{p}{1-p} \underbrace{\sum_{x=1}^{\infty}\left(e^{t}(1-p)\right)^{x}}_{\text {geometric series: } a=r=e^{t}(1-p)} \\
& =\frac{p}{1 \frac{p}{p}} \cdot \frac{e^{t}(1-p)}{1-e^{t}(1-p)}=\frac{p e^{t}}{1-e^{t}(1-p)}
\end{aligned}
$$

2. Suppose random variable X has probability mass function $P(X=x)=\frac{27}{40}\left(\frac{1}{3}\right)^{x}$, for integers $0 \leq x \leq 3$.
(a) Verify that this is a valid probability mass function.

- nonnegative probabilities

$$
a+a r+a r^{2}+\cdots+a r^{n-1}=a \frac{1-r^{n}}{1-r}
$$

$$
\text { - Sum is: } \quad \frac{27}{40}(\underbrace{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}_{\begin{array}{c}
\text { terms of a } \\
\text { series with } \\
\underbrace{}_{r=3}=\frac{1}{3}
\end{array}})=\frac{27}{40}\left(\frac{1-\left(\frac{1}{3}\right)^{4}}{1-\frac{1}{3}}\right)=\frac{27}{40}\left(\frac{\frac{80}{21}}{\frac{21}{3}}\right)=\frac{27}{40} \cdot \frac{40}{27}=1
$$

(b) Find the moment generating function $M_{X}(t)$. Try to write the mgf without a summation.

$$
\begin{gathered}
M_{x}(t)=E\left(e^{t x}\right)=e^{0} \cdot \frac{27}{40}+e^{t} \cdot \frac{9}{40}+e^{2 t} \cdot \frac{3}{40}+e^{3 t} \cdot \frac{1}{40}=\frac{27}{40} \cdot \frac{1-\left(\frac{e^{t}}{3}\right)^{4}}{1-\left(\frac{e^{t}}{3}\right)}=\frac{81-e^{4 t}}{40\left(3-e^{t}\right)} \\
\text { common ratio: } r=\frac{e^{t}}{3}
\end{gathered}
$$

(c) Compute $M_{X}^{\prime}(0)$. Does your answer agree with the expected value of X computed directly from the pmf?

$$
\begin{aligned}
& M_{x}(t)=\frac{81-e^{4 t}}{40\left(3-e^{t}\right)} \quad M_{x}^{\prime}(t)=\frac{40\left(3-e^{t}\right)\left(-4 e^{4 t}\right)-\left(81-e^{4 t}\right)(40)\left(-e^{t}\right)}{40^{2}\left(3-e^{t}\right)^{2}} \quad \text { Use technology! } \\
& M_{x}^{\prime}(0)=\frac{40(2)(-4)-(80)(40)(-1)}{40^{2}(2)^{2}}=\frac{72}{160}=\frac{9}{20} \\
& E(X)=0+1 \cdot \frac{9}{40}+2 \cdot \frac{3}{40}+3 \cdot \frac{1}{40}=\frac{9+6+3}{40}=\frac{9}{20} \longleftarrow \text { same! }
\end{aligned}
$$

\downarrow This problem is in the next class video.
3. Let X be a discrete random variable with $\operatorname{mgf} M_{X}(t)$, and let $Y=a X+b$. Write the definition of $M_{Y}(t)$. Replace Y with $a X+b$ and simplify the expected value to show that $M_{Y}(t)=e^{t b} M_{X}(a t)$.

$$
M_{Y}(t)=E\left(e^{t Y}\right)=E\left(e^{t(a x+b)}\right)=E\left(e^{a t x+b t}\right)=e^{b t} E\left(e^{a t x}\right)=e^{b t} M_{X}(a t)
$$

If $Y=a X+b$, then $M_{y}(t)=e^{b t} M_{x}(a t)$.

We will do problems \#4 and \#5 next week.

