1. Suppose that 45% of the phone calls you receive are scam calls. Assume that the probability of a scam call is independent from one call to the next. Let X be the number of calls you receive until (and including) the next scam call.
(a) What is $P(X=3)$?

$$
\begin{gathered}
P(X=3)=(0.55)^{2}(0.45) \approx 0.136 \\
\text { not scam calls } r
\end{gathered} \quad_{\text {scam call }}
$$

(b) If n is any positive integer, what is $P(X=n)$?

$$
P(X=n)=(0.55)^{n-1}(0.45)
$$

$$
\text { not scam calls } \vartheta \quad \hat{\tau}_{\text {scam call }}
$$

(c) What is $E(X)$?

$$
E(X)=\frac{1}{0.45} \approx 2.22
$$

2. Let Y be the number of calls until (and including) the fourth scam call.
(a) What is $P(Y=n)$?
(b) What is $E(Y)$?

$$
E(Y)=\frac{4}{0.45} \approx 8.89
$$

3. An interviewer must find 10 people who agree to be interviewed. Suppose that when asked, a person agrees to be interviewed with probability 0.4.
(a) What is the probability that the interviewer will have to ask exactly 20 people?

$$
\text { Let } X \sim N B(r=10, p=0.4) \text {, so } P(X=20)=\binom{20-1}{10-1}(0.4)^{10}(0.6)^{10} \approx 0.0586
$$

(b) What are the mean and standard deviation of the number of people that the interviewer will have to ask?

$$
\begin{aligned}
E(X)=\frac{r}{p}=\frac{10}{0.4}=25 \quad \operatorname{Var}(X) & =\frac{r(1-p)}{p^{2}}=\frac{10(0.6)}{0.4}=37.5 \\
\sigma_{X} & =\sqrt{37.5} \approx 6.12
\end{aligned}
$$

$$
\begin{aligned}
& P(Y=n)=\binom{n-1}{3}(0.45)^{3}(0.55)^{n-4}(0.45)=\binom{n-1}{3}(0.45)^{4}(0.55)^{n-4} \\
& \left.\begin{array}{lll}
3 \text { scam calls } \uparrow & \uparrow & \begin{array}{c}
\text { prob. } \\
\text { in } \\
n-1 \\
\text { calls }
\end{array} \\
\text { scam calls }
\end{array} \begin{array}{c}
\text { prob. } n-4 \\
\text { non- scam } \\
\text { calls }
\end{array}\right) \quad \text {-last scam call }
\end{aligned}
$$

4. If X has a geometric distribution with parameter p, and k is a positive integer, what is $P(X>k)$?
$X>k$ means that the first k trials are all failures.
Thus, $P(X>k)=(1-p)^{k} \leftarrow$ GEOMETRIC TAIL PROBABILITY
5. Scam calls, again. Suppose that 45% of the phone calls you receive are scam calls.
(a) What is the probability that none of the first 4 calls are scam calls?

$$
X \sim \operatorname{Geometric}(0.45) \quad P(X>4)=(0.55)^{4} \approx 0.092
$$

(b) If none of the first 4 calls are scam calls, what is the probability that none of the first 7 calls are scam calls?

$$
P(X>7 \mid X>4)=\frac{P(X>7 \text { and } X>4)}{P(X>4)}=\frac{P(X>7)}{P(X>4)}=\frac{(0.55)^{7}}{(0.55)^{4}}=\underbrace{(0.55)^{3}}_{\substack{\text { This is }}} \approx 0.166
$$

(c) If none of the first 4 calls are scam calls, what is the probability that none of the first $4+k$ calls are scam calls?

$$
P(X>4+k \mid X>4)=\frac{P(X>4+k)}{P(X>4)}=\frac{(0.55)^{4+k}}{(0.55)^{4}}=(0.55)^{k}=P(X>k)
$$

OBSERVATION: For $X \sim G e o(p)$ and integers $O<s<t$,

$$
P(X>t \mid X>s)=P(X>t-s)
$$

\leftarrow MEMORYLESS PROPERTY of a geometric iv

INTERPRETATION: The waiting time until the next success does not depend on how many failures you have already seen.

BONUS: Show that $\sum_{k=1}^{\infty} k(1-p)^{k-1} p=\frac{1}{p}$. This proves that the mean of a geometric random variable is $\frac{1}{p}$.
Recall the geometric series: $\quad a+a r+a r^{2}+a r^{3}+\cdots=\frac{a}{1-r}$ for $|r|<1$
Let $a=r=1-p: \quad \sum_{k=1}^{\infty}(1-p)^{k}=(1-p)+(1-p)^{2}+(1-p)^{3}+\cdots=\frac{1-p}{p}$
so: $\quad \sum_{k=1}^{\infty}(1-p)^{k}=\frac{1}{p}-1$
Differentiate with respect to p :

$$
\sum_{k=1}^{\infty}-k(1-p)^{k-1}=-\frac{1}{p^{2}}
$$

Multiply by -p: $\quad \sum_{k=1}^{\infty} k(1-p)^{k-1} p=\frac{1}{p}$

