1. Suppose that in a batch of 20 items, 3 are defective. If 5 of the items are sampled at random:
(a) What is the probability that none of the sampled items are defective?

$$
\begin{aligned}
& X \sim \text { Hypergeometric }(5,3,20) \\
& R: \text { dhyper }(0,3,17,5)
\end{aligned} \quad P(X=0)=\frac{\binom{3}{0}\binom{17}{5}}{\binom{20}{5}}=\frac{91}{228} \approx 0.399
$$

(b) What is the probability that exactly 1 of the sampled items are defective?

$$
P(X=1)=\frac{\binom{3}{1}\binom{17}{4}}{\binom{20}{5}}=\frac{35}{76} \approx 0.461
$$

$$
R: \text { dhyper }(1,3,17,5)
$$

Mathematica: $\operatorname{PDF}[$ Hypergeometric Distribution $[5,3,20], 1] / / \mathrm{N}$
(c) What is the probability that exactly 4 of the sampled items are defective?

$$
\begin{aligned}
& \text { Since the population contains only } 3 \text { defective items: } \\
& \qquad P(X=4)=0=\frac{\binom{3}{4}\binom{17}{1}}{\binom{20}{5}} \text { This is defined to be zero. }
\end{aligned}
$$

(d) On average how many defective items will be found in a random sample of 5 items?

$$
\text { Find the mean of } X \text { : }
$$

$$
E(X)=n \cdot \frac{M}{N}=5 \cdot \frac{3}{20}=\frac{3}{4}
$$

(e) What is the probability that the number of defective items sampled is within 2 standard deviations of the mean number?

$$
\begin{aligned}
& \text { Find the standard deviation of } X \text { : } \\
& \qquad \begin{aligned}
\operatorname{Var}(X)=n \cdot \frac{M}{N}\left(1-\frac{M}{N}\right)\left(\frac{N-n}{N-1}\right)=5 \cdot \frac{3}{20}\left(1-\frac{3}{20}\right)\left(\frac{15}{19}\right)=\frac{153}{304} \approx 0.503
\end{aligned} \\
& \begin{aligned}
\sigma_{X}=\sqrt{\frac{153}{304}} \approx 0.709
\end{aligned} \\
& \text { Now find the requested probability: } \\
& \begin{aligned}
P\left(|X-\mu|<2 \sigma_{x}\right) & =P(-0.668<X<2.168) \\
& =P(X \leq 2)
\end{aligned}
\end{aligned} \begin{aligned}
& \text { since } X \text { takes only } \\
& \text { nonnegative integer values }
\end{aligned} ~ l ~(X)
$$

$$
=\frac{113}{114} \approx 0.991
$$

$$
R: \text { phyper }(2,3,17,5)
$$

Mathematica: CDF[Hypergeometric Distribution $[3,5,20], 2]$
2. Let X be a hypergeometric random variable with parameters n, M, and N. Let Y be a binomial random variable with parameters n and $p=\frac{M}{N}$. How does $E(X)$ compare to $E(Y)$? How does $\operatorname{Var}(X)$ compare to $\operatorname{Var}(Y)$?

$$
\begin{aligned}
& \text { The means of } X \text { and } Y \text { are equal: } \\
& \qquad E(X)=n \cdot \frac{M}{N}=n \cdot p=E(Y)
\end{aligned}
$$

$$
\text { The variance of } X \text { is less than the variance of } Y \text { if } n>1 \text { : }
$$

$$
\begin{gathered}
\operatorname{Var}(X)=n \cdot \frac{M}{N}\left(1-\frac{M}{N}\right)\left(\frac{N-n}{N-1}\right)=n p(1-p)\left(\frac{N-n}{N-1}\right) \leq n p(1-p)=\operatorname{Var}(Y) \\
\leq 1
\end{gathered}
$$

$$
\text { So } \operatorname{Var}(X)<\operatorname{Var}(Y) \text { if } n>1
$$

$$
\text { (If } n=1 \text {, both } X \text { and } Y \text { have the same Bernoulli distribution.) }
$$

3. An unknown number, N, of animals inhabit a certain region. To estimate the size of the population, ecologists perform the following experiment: They first catch M of these animals, mark them in some way, and release them. After allowing the animals to disperse throughout the region, they catch n of the animals and count the number, X, of marked animals in this second catch.

The ecologists want to make a maximum likelihood estimate of the population size N. This means that if the observed value of X is x, then they estimate the population size to be the integer N that maximizes the probability that $X=x$. Help them complete this estimate as follows.
(a) What assumptions are necessary to say that X has a hypergeometric distribution?

$$
\begin{aligned}
& \text { Assume that the population of animals remains fixed between the two } \\
& \text { catches, and that each animal is equally likely to be caught. }
\end{aligned}
$$

(b) Let $P_{x}(N)$ be the probability that $X=x$ given that $X \sim \operatorname{Hypergeometric}(n, M, N)$. Write down a formula for $P_{x}(N)$

$$
P_{x}(N)=P(X=x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}
$$

assume n, M, and N
are known
(c) Simplify the ratio $\frac{P_{x}(N)}{P_{x}(N-1)}$. Hint: use FullSimplify in Mathematica!
\mathbf{N} is a built-in function in Mathematica, so here we use pop for the population size:

$$
\begin{aligned}
& \operatorname{In}[18]:=\text { FullSimplify }\left[\frac{\text { Binomial }[M, x] \text { Binomial }[p o p-M, n-x]}{\text { Binomial }[p o p, n]} / \frac{\text { Binomial }[M, x] \text { Binomial }[p o p-1-M, n-x]}{\text { Binomial }[p o p-1, n]}\right] \\
& \text { Out[18]= } \frac{(-M+p o p)(-n+p o p)}{\operatorname{pop}(-M-n+p o p+x)} \quad\left\{\text { This is } P_{x}(N) \text {. This is } P_{x}(N-1)\right. \text {. } \\
& \text { Thus: } \left.\frac{P_{x}(N)}{P_{x}(N-1)}=\frac{(N-M)(N-n)}{N(N+x-M-n)}\right\} \quad \begin{array}{l}
\text { Note that } P_{x}(N) \geq P_{x}(N-1) \\
\text { if and only if this fraction is } \geq 1 .
\end{array}
\end{aligned}
$$

(d) Show that $\frac{P_{x}(N)}{P_{x}(N-1)} \geq 1$ if and only if $N \leq \frac{M n}{x}$.

$$
\begin{aligned}
\frac{P_{x}(N)}{P_{x}(N-1)} \geq 1 \text { iff } \frac{(N-M)(N-n)}{N(N+x-M-n)} & \geq 1 \\
\text { iff } N^{2}-N_{n}-M N+M n & \geq N^{2}+N x-M N-N_{n} \\
\text { of } M n & \geq N x \\
\text { of } \quad \frac{M_{n}}{x} & \geq N
\end{aligned}
$$

(e) Explain why $P_{x}(N)$ attains its maximum value when N is the largest integer less than or equal to $\frac{M n}{x}$. What is the most likely population size N ?

If $N \leq \frac{M_{n}}{x}$, then $P_{x}(N) \geq P_{x}(N-1)$, so population size N is more likely than population size $N-1$.

However, if $N>\frac{M_{n}}{x}$, then $P_{x}(N)<P(N-1)$, so population size N is less likely than population size $N-1$.
Thus, the most likely population size is the largest integer N that is less than or equal to $\frac{M n}{x}$.
(f) If $M=30, n=20$, and $x=7$, what is the maximum likelihood estimate for N ? $\underbrace{\text { captured }}_{\text {marked }}$ captured animals that are marked

$$
\frac{M_{n}}{x}=\frac{30(20)}{7} \approx 85.7 \text {, so the estimate is } N=85
$$

4. Urn 1 contains 100 balls, 10 of which are red. Let X_{1} be the number of red balls in a random sample of size 50 from Urn 1 . Urn 2 contains 100 balls, 50 of which are red. Let X_{2} be the number of red balls in a random sample of size 10 from Urn 2.
(a) Use technology to compute the emf of X_{1}. Display the values as a table. Then do the same for the emf of X_{2}. What do you notice?
```
Using Mathematica:
    In[9]:= Table[PDF[HypergeometricDistribution[50, 10, 100], x], {x, 0, 10}] // N
    Ou[[9]={0.00059342,0.00723683, 0.0379933,0.113096,0.211413,
                        0.259334,0.211413,0.113096,0.0379933,0.00723683,0.00059342}
                                    ]pmf of \mp@subsup{I}{1}{}
            In[11]:= Table[PDF[HypergeometricDistribution[10, 50, 100], x], {x, 0, 10}]//N
```



```
            The two pmfs are the same!
```

(b) Change the numbers 100, 10, and 50 in this problem and recompute the emfs of X_{1} and X_{2}. What do you notice?

$$
\begin{array}{r}
\text { For example, if } X_{1} \sim \text { Hypergeometric }(45,12,80) \\
\text { and } X_{2} \sim \text { Hypergeometric }(12,45,80) \\
\text { then } X_{1} \text { and } X_{2} \text { again have the same pmf. }
\end{array}
$$

(c) Make a conjecture about when two hypergeometric random variables have the same emf.

$$
\begin{aligned}
& \text { If } X_{1} \sim \text { Hypergeometric }(a, b, N) \text { and } X_{2} \sim \operatorname{Hyper} \text { geometric }(b, a, N) \text {, } \\
& \text { then } X_{1} \text { and } X_{2} \text { have the same pmf. }
\end{aligned}
$$

