1. Suppose you roll five (fair, 6 -sided) dice. Define the following events:
A : exactly four of the five dice show the value 1
B : exactly three of the five dice show the value 1
C : exactly two of the five dice show the value 1
D : the sum of the values on the five dice is 8
(a) What is $P(A)$?
(b) What is $P(A \cup B \cup C)$?
(c) What is $P(A \mid D)$?

First, note that there are 6^{5} possible outcomes.
(a) There are $\binom{5}{4}$ ways to roll four 1 s , and 5 numbers for the remaining dice, so

$$
P(A)=\frac{\binom{5}{4} \cdot 5}{6^{5}}=\frac{25}{6^{5}} \approx 0.0032 .
$$

(b) Similarly, event B occurs in $\binom{5}{3} \cdot 5^{2}$ ways, and event C occurs in $\binom{5}{2} \cdot 5^{3}$ ways. Since events A, B, and C are disjoint, we have

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)=\frac{\binom{5}{4} \cdot 5}{6^{5}}+\frac{\binom{5}{3} \cdot 5^{2}}{6^{5}}+\frac{\binom{5}{2} \cdot 5^{3}}{6^{5}}=\frac{1525}{6^{5}} \approx 0.1961
$$

(c) The event $A \cap D$ occurs exactly when four of the dice show 1 , and the remaining dice shows 4 . Furthermore, if D occurs, then exactly one of the events A, B, or C occurs; thus $P(D)$ can be computed by the Law of Total Probability. By the definition of conditional probability,

$$
P(A \mid D)=\frac{P(A \cap D)}{P(D)}=\frac{\frac{5}{6^{5}}}{\frac{35}{6^{5}}}=\frac{1}{7} \approx 0.1428
$$

2. Consider a 20 -sided die (an icosahedron) with values from 1 to 20 . Roll the die one time. Let A denote the event that the value is even. Let B denote the event that the value is 13 or higher.
(a) Are A and B disjoint events? Why?
(b) Are A and B independent events? Why?
(c) Calculate $P(A \cup B)$ using the inclusion-exclusion formula.
(a) Events A and B are not disjoint because they have some outcomes in common (specifically, 14, 16, 18, 20).
(b) Note that $P(A)=\frac{1}{2}, P(B)=\frac{8}{20}$, and $P(A \cap B)=\frac{4}{20}$. Then $P(A \cap B)=P(A) P(B)$, so events A and B are independent.
(c) Using the inclusion-exclusion formula:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{1}{2}+\frac{4}{10}-\frac{2}{10}=0.7
$$

3. An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red balls and an unknown number of blue balls. A single ball is drawn from each urn. The probability that both balls are the same color is 0.44 . How many blue balls are in the second urn?*

Let x be the number of blue balls in urn 2 ; then:

$$
0.44=P(\text { both red })+P(\text { both blue })=\frac{4}{10} \cdot \frac{16}{x+16}+\frac{6}{10} \cdot \frac{x}{x+16}=\frac{64+6 x}{10(x+16)}
$$

Solving for x, we find $x=4$.

[^0]4. Let X be the amount of time until the next message appears on your social media feed. Suppose $E(X)=26$ seconds and $\sigma_{X}=4$ seconds.
(a) Find a lower bound on the probability that X is between 20 and 32 seconds.
(b) Find an interval that contains X with a probability of at least 0.9.
(a) For $P(20<X<30)$, use Chebyshev's inequality with $k=1.5$:
$$
P(|X-26| \geq 1.5(4)) \leq \frac{1}{1.5^{2}}=\frac{4}{9} .
$$

Taking the complement, we find that $P(20<X<30) \geq \frac{5}{9}$.
(b) To find an interval that contains X with probability at least 0.9 , use Chebyshev's inequality with $k=\sqrt{10}$:

$$
P(|X-26| \geq 4 \sqrt{10}) \leq \frac{1}{10}
$$

Taking the complement, we find that $P(26-4 \sqrt{10}<X<26+4 \sqrt{10}) \geq 0.9$, so one such interval is $(13.35,38.65)$.
5. An urn contains 5 red, 6 blue, and 8 green balls. If a set of 3 balls is randomly selected, what is the probability that each of the balls will be (a) of the same color; (b) of different colors? Repeat under the assumption that the balls are sampled with replacement: whenever a ball is selected, its color is noted and it is replaced in the urn before the next selection. (Hint: When sampling with replacement, each ordered selection is equally likely.)

Sampling without replacement:

(a) If the 3 balls are of the same color, then either they are all red, or all blue, or all green (three mutually exclusive options). Thus,

$$
P(\text { same color })=\frac{\binom{5}{3}+\binom{6}{3}+\binom{8}{3}}{\binom{19}{3}}=\frac{86}{969} \approx 0.089
$$

(b) To choose three balls of different colors, we must choose 1 of 5 red balls, and 1 of 6 blue balls, and 1 of 8 green balls. Thus,

$$
P(\text { different colors })=\frac{5 \cdot 6 \cdot 8}{\binom{19}{3}}=\frac{240}{969} \approx 0.248
$$

Sampling with replacement:

(a) There are now 5^{3} ways to choose 3 red balls, and similarly for the other colors. Thus,

$$
P(\text { same color })=\frac{5^{3}+6^{3}+8^{3}}{19^{3}}=\frac{853}{6859} \approx 0.124
$$

(b) There are $5 \cdot 6 \cdot 8$ combinations of 3 balls, one of each color, and each combination may be ordered in 3 ! ways. Thus,

$$
P(\text { different colors })=\frac{(5 \cdot 6 \cdot 8) \cdot 3!}{19^{3}}=\frac{1440}{6859} \approx 0.210
$$

6. A roulette wheel has 12 numbers colored red (R) or black (B) as follows:

$$
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\mathrm{R} & \mathrm{R} & \mathrm{~B} & \mathrm{R} & \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{R} & \mathrm{~B} & \mathrm{R} & \mathrm{R}
\end{array}
$$

Let A be the event that a spin of the wheel yields an red number. Let B be the event that a spin of the wheel yields an even number. Let C be the event that a spin of the wheel yields a number less than 7 . Are events A, B, and C (pairwise) independent? Are they mutually independent?
The following probabilities are readily obtained from the given information:

$$
\begin{array}{ccc}
P(A)=\frac{1}{2} & P(B)=\frac{1}{2} & P(C)=\frac{1}{2} \\
P(A \cap B)=\frac{1}{4} & P(A \cap C)=\frac{1}{4} & P(B \cap C)=\frac{1}{4} \\
& P(A \cap B \cap C)=\frac{1}{6} &
\end{array}
$$

Since $P(A \cap B)=P(A) P(B), P(A \cap C)=P(A) P(C), P(B \cap C)=P(B) P(C)$, the events are (pairwise) independent.
However, $P(A \cap B \cap C) \neq P(A) P(B) P(C)$, so the events are not mutually independent.

[^0]: *Actuary Exam P practice problem

