1. Suppose that 45% of the phone calls you receive are scam calls. Assume that the probability of a scam call is independent from one call to the next.
(a) Let $X=1$ if the next call you receive is from a scam call, and $X=0$ otherwise. What type of random variable is X ? What are its mean and standard deviation?

$$
\begin{aligned}
& X \sim \text { Bernoulli with } p=0.45, \quad \text { or equivalently } X \sim \operatorname{Bin}(1,0.45) . \\
& E(X)=0.45, \quad \sigma_{X}=\sqrt{(0.45)(0.55)}=0.497
\end{aligned}
$$

(b) Let Y be the number of scam calls in the next 40 phone calls. What type of random variable is Y ? Sketch the emf of Y.

$$
Y \sim \operatorname{Bin}(40,0.45)
$$

(c) What are the mean and standard deviation of Y ?

$$
\begin{aligned}
& E(Y)=40(0.45)=18 \\
& \sigma_{Y}=\sqrt{40(0.45)(0.55)}=3.14
\end{aligned}
$$

(d) Suppose that you lose 30 seconds of your time every time a scammer calls your phone. What are the expected value and standard deviation of the amount of time you will lose over the next 40 phone calls?

$$
\begin{aligned}
& \text { Let } Z=30 Y \text { be the number of seconds you lose. } \\
& \text { Then } E(Z)=30 E(Y)=540 \text { seconds, and } \sigma_{Z}=30 \sigma_{Y}=94 \text { seconds. }
\end{aligned}
$$

2. A coin that lands on heads with probability p is flipped ten times. Given that a total of 6 heads results, what is the conditional probability that the first three flips are heads, tails, heads (in that order)?

Let $X \sim \operatorname{Bin}(10, p)$ be the number of heads in all ten flips.
Let $Y \sim \operatorname{Bin}(7, p)$ be the number of heads in the last 7 flips
Then:

$$
P(H T H \mid X=6)=\frac{P(H T H \cap X=6)}{P(X=6)}=\frac{P(H T H) P(Y=4)}{P(X=6)}
$$

$$
=\frac{p^{2}(1-p) \cdot\binom{7}{4} p^{4}(1-p)^{3}}{\binom{10}{6} p^{6}(1-p)^{4}}=\frac{35}{210}=\frac{1}{6}
$$

3. Among persons donating blood to a clinic, 85% have Rh^{+}blood. Six people donate blood at the clinic on a particular day.
(a) Find the probability that at most three of the six have Rh^{+}blood.

$$
X \sim \operatorname{Bin}(6,0.85) \quad P(X=3)=B(3 ; 6,0.85)=0.047
$$

(b) Find the probability that at most one of the six does not have Rh^{+}blood.

$$
\begin{aligned}
P(X \geq 5)= & b(5 ; 6,0.85)+b(6 ; 6,0.85)=0.776 \\
\text { or: } & =1-B(4 ; 6,0.85)
\end{aligned}
$$

(c) What is the probability that the number of Rh^{+}donors lies within two standard deviations of the mean number?

$$
\begin{aligned}
& E(X)=5.1, \quad \sigma_{X}=0.875 \\
& P(3.35<X<6.85)=P(X=4)+P(X=5)+P(X=6)=0.953
\end{aligned}
$$

Note: Chebyshev's Inequality implies $P(|X-\mu|<2 \sigma) \geq \frac{3}{4}$, which is true, but the part gives a better answer.
(d) The clinic needs six Rh^{+}donors on a certain day. How many people must donate blood to have the probability of obtaining blood from at least six Rh^{+}donors over 0.95 ?

Let $Y_{n} \sim \operatorname{Bin}(n, 0.85)$.
We want n such that $P\left(Y_{n} \geq 6\right) \geq 0.95$.
Testing some n, we find:

$$
P\left(Y_{8} \geq 6\right)=0.895 \quad \text { and } \quad P\left(Y_{9} \geq 6\right)=0.966
$$

Thus, the clinic needs at least 9 blood donors.

BONUS: A system consists of n components, each of which will independently function with probability p. The system will operate effectively if at least one-half of its components function. For what values of p is a 5 -component system more likely to operate than a 3-component system?

$$
\begin{aligned}
& \text { Let } X \sim \operatorname{Bin}(5, p) \text {. The probability that a } 5 \text {-component } \\
& \text { system functions effectively is } P(X \geq 3) . \\
& \text { Similarly, let } Y \sim \operatorname{Bin}(3, p) \text {. The probability that a 3-component } \\
& \text { system functions effectively is } P(Y \geq 2) . \\
& \text { Thus, we want } p \text { such that: } \\
& \qquad P(X \geq 5)>P(Y \geq 2) \\
& P(X=3)+P(X=4)+P(X=5)>P(Y=2)+P(Y=3) \\
& 10 p^{3}(1-p)^{2}+5 p^{4}(1-p)+p^{5}>3 p^{2}(1-p)+p^{3} \\
& \text { Simplify to obtain: } \quad 3(p-1)^{2}(2 p-1)>0 \\
& \text { S } \quad \gg \frac{1}{2} \\
& \text { A } 5 \text {-component system is more likely than a 3-component } \\
& \text { System to operate effectively if } p>\frac{1}{2} .
\end{aligned}
$$

