1. Let X be a random variable with pmf given by $p(4)=0.3, p(5)=0.2, p(8)=0.3, p(10)=0.2$.
(a) What is the expected value $E(X)$?

$$
E(X)=4(0.3)+5(0.2)+8(0.3)+10(0.2)=6.6
$$

(b) What is $E\left(X^{2}\right)$?

$$
E\left(X^{2}\right)=4^{2}(0.3)+5^{2}(0.2)+8^{2}(0.3)+10^{2}(0.2)=49
$$

(c) What is $\operatorname{Var}(X)$? Hint: use the shortcut formula!

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=49-6.6^{2}=5.44
$$

(d) Suppose the random variable is part of a game in which you win $2 X-8$ dollars.

Let $Y=2 X-8$. What is the emf of Y ?

y	0	2	8	12
$p_{Y}(y)$	0.3	0.2	0.3	0.2

(e) Use the pmf of Y to find $E(Y)$, your expected winnings in this game.

$$
E(Y)=O(0.3)+2(0.2)+8(0.3)+12(0.2)=5.2
$$

(f) Use the emf of Y to find $E\left(Y^{2}\right)$, and then find $\operatorname{Var}(Y)$.

$$
\begin{aligned}
& E\left(Y^{2}\right)=0^{2}(0.3)+2^{2}(0.2)+8^{2}(0.3)+12^{2}(0.2)=48.8 \\
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-(E(Y))^{2}=48.8-(5.2)^{2}=21.76
\end{aligned}
$$

(g) How is $E(Y)$ related to $E(X)$? How is $\operatorname{Var}(Y)$ related to $\operatorname{Var}(X)$? $\operatorname{Var}(Y) \geq$ z tar $(X)-8$

$$
\begin{aligned}
Y & =2 X-8 \\
E(Y) & =2 E(X)-8 \quad \text { and } \quad \operatorname{Var}(Y)=2^{2} \operatorname{Var}(X)
\end{aligned}
$$

Expected value is linear, but variance is not!

Expected value is linear, but variance is not!

$$
\begin{gathered}
E(a X+b)=a E(X X)+b \\
E(a f(X)+b g(X)+c)=a E(f(X))+b E(g(X))+c
\end{gathered}
$$

$$
\begin{gathered}
\quad \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) \\
\sigma_{a x+b}=|a| \sigma_{x} \\
\text { why? } \operatorname{Var}(a X+b)=E\left((a X+b)^{2}\right)-E(a X+b)^{2} \\
=E\left(a^{2} X^{2}+2 a b X+b^{2}\right)-(a E(x)+b)^{2} \\
=\cdots=a^{2}\left(E\left(X^{2}\right)-E(X)^{2}\right)=a \operatorname{Var}(X)
\end{gathered}
$$

Chebyshev's Inequality: Let X be a discrete random variable with mean μ and standard deviation σ. For any $k \geq 1$,
$P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$.
In words, the probability that X is at least k standard deviations away from its mean is at most $\frac{1}{k^{2}}$.
2. Verify that Chebyshev's Inequality holds for the random variable X from Problem 1, using the value $k=2$. That is, check that $P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$.

$$
\text { Note that } \sigma_{x}=\sqrt{5.44} \approx 2.33
$$

$$
\text { Thus, we have: } \mu=6.6, \sigma=2.33 \text {, and } k=2 \text {. }
$$

Consider: $\quad P(|X-6.6| \geq 2(2.33))$

$$
\begin{aligned}
& =P(|X-6.6| \geq 4.66) \\
& =P(X \leq 1.94 \text { or } X \geq 11.26) \\
& =0
\end{aligned}
$$

Since $P(|X-\mu| \geq 2 \sigma)=0$, which is less than $\frac{1}{2^{2}}=\frac{1}{k^{2}}$,
we see that Chebyshey's inequality holds in this case.
3. The number of equipment breakdowns in a manufacturing plant averages 4 per week, with standard deviation 0.7 per week.
(a) Find an interval that includes at least 90% of the weekly figures for the number of breakdowns.

Apply Chebysher's Inequality with k that solves $\frac{1}{k^{2}}=0.1$.

$$
\text { That is } k=\sqrt{10} \approx 3.16 \text {. }
$$

Chebysher's Inequality then says:

$$
\begin{aligned}
P(|X-4| \geq 3.16(0.7)) & =P(|X-4| \geq 2.21) \\
& =P(X \leq 1.79 \circ X \geq 6.21) \leq 0.1
\end{aligned}
$$

Take the complement to flip the inequality:

$$
P(1.79<X<6.21)>0.9
$$

So the interval $(1.79,6.21)$ includes at least 90% of the numbers of weekly breakdowns.
(b) A plant supervisor promises that the number of breakdowns will rarely exceed 7 in a one-week period. Is the supervisor justified in making this claim? Why?

From part (a), we see that 90% of weeks have less than 7 break downs.
We can do even better if we apply Chebyshev's Inequality with $k=5$:

$$
P(|X-4| \geq 5(0.7))=P(X \leq 0.5 \text { or } X \geq 7.5)=P(X=0)+P(X>7) \leq \frac{1}{5^{2}}
$$

So $P(X>7) \leq \frac{1}{25}=0.04$.
Thus, the probability of more than 7 breakdowns in a week is not greater than 0.04 . The supervisor's claim seems justified.

BONUS: When flipped, a certain coin comes up heads with probability p. Let X be the number of heads in n flips of this coin.
(a) What is the probability distribution of X ?

$$
P(X=x)=\underbrace{\binom{n}{x}}_{\uparrow} \underbrace{p^{x}(1-p)^{n-x}}_{\begin{array}{c}
\text { probability of any particular sequence of } \\
x \text { heads and } n-x \text { tails }
\end{array}} \text { for } x=0,1,2, \ldots, n
$$

number of sequences of x heads and $n-x$ tails
(b) Show that $E(X)=n p$.

$$
\begin{aligned}
E(X) & =\sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x}=n p \sum_{x=1}^{n} x \frac{(n-1)!}{x!(n-x)!} p^{x-1}(1-p)^{n-x} \\
& =n p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x} \\
& =n p \sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-j-1)!} p^{j}(1-p)^{n-j-1} \text { let } j=x-1 \\
& =n p \sum_{j=0}^{n-1}\binom{n-1}{j} p^{j}(1-p)^{n-j-1} \\
& =n p(p+(1-p))^{n-j-1} \quad \text { binomial theorem } \\
& =n p(1)^{n-j-1}=n p
\end{aligned}
$$

