- 1. Let random variable X be the output of runif(1) in \mathbf{R} (or, if you prefer, the output of RandomReal[] in *Mathematica*). Is *X* a continuous or discrete random variable?
- (a) Have one person in your group defend the assertion that X is a continuous random variable.

$$X$$
 is equally likely to take any value between O and I , so X is a continuous random variable.

(b) Have another person in your group defend the assertion that X is a discrete random variable.

How do we reconcile these two assertions?
$$X$$
 is a discrete approximation of a continuous random variable.

2. The cdf for a random variable *X* is as follows:

$$X = \begin{cases} 0 & x < 0 \\ 0.2 & 0 \le x < 1 \\ 0.5 & 1 \le x < 2 \\ 0.8 & 2 \le x < 4 \\ 1 & 4 \le x \end{cases}$$

(b) What is P(X = 3)?

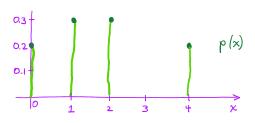
$$P(X=3) = F(3) - F(3-) = 0.8 - 0.8 = 0$$

(c) What is $P(2.5 \le X)$?

$$P(2.5 \le X) = 1 - F(2.5) = 1 - 0.8 = 0.2$$

(d) Sketch the pmf of X.

The non zero values of
$$p(x)$$
 are $p(0) = 0.2$, $p(1) = 0.3$, $p(2) = 0.3$, and $p(4) = 0.2$.



3. Each of the following functions might be the pmf for some random variable *X*. How can you determine whether a given function is a pmf? Which of these functions is a pmf?

(a)
$$p(x) = 2 - 3x$$
 for $x = 0,1$
This is not a pmf because $p(1) = -1$,
but probabilities must be nonnegative.

(b)
$$p(x) = \frac{x^2}{50}$$
 for $x = 1, 2, ..., 5$
This is not a pmf because $\sum_{x=1}^{5} \frac{x^2}{50} = \frac{1+4+9+16+25}{50} = \frac{55}{50} \neq 1$

(c)
$$p(x) = \log_{10} \left(\frac{x+1}{x}\right)$$
 for $x = 1, 2, ..., 9$

Since
$$p(x) \ge 0$$
 for $x = 1, 2, ..., 9$ and and $\sum_{k=1}^{9} \log_{10}\left(\frac{x+1}{x}\right) = \log_{10}\left(\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot ... \cdot \frac{10}{9}\right) = \log_{10}\left(10\right) = 1$, this is a pmf.

(This is the pmf of the distribution known as Benford's Law.)

- 4. Which of the following properties must hold for any cdf F(x)? For each property, either say why it must hold or give a counterexample to show that it might not hold.
 - (a) $\lim_{b\to-\infty} F(b) = 0$

Yes, since
$$P(X \le b) \to 0$$
 as $b \to -\infty$.

(b)
$$\lim_{b\to\infty} F(b) = 1$$

Yes, since $P(X \le b) \to 1$ as $b \to \infty$.

(c) F(x) is continuous

$$No - consider F(x) in #2 above$$

(d) F(x) is nondecreasing; that is, if a < b, then $F(a) \le F(b)$

Yes, if
$$a < b$$
, then
$$F(a) = P(X \le a) \le P(X \le a) + P(a < X \le b) = P(X \le b) = F(b)$$
this is nonnegative

(e) F(b) = 0.5 for some value b

BONUS: Three balls are randomly selected (without replacement) from an urn containing 20 balls numbered 1 through 20. Let random variable X be the largest of the three selected numbers. What is P(X = 17)? What is $P(X \ge 17)$?

Assume that each of the $\binom{20}{3}$ selections are equally likely. The event $(X \le x)$ occurs when the three selected balls have numbers less than or equal to x. There are $\binom{x}{3}$ ways to select three such balls. Thus,

$$F(x) = P(X \le x) = \frac{\binom{3}{x}}{\binom{20}{3}}.$$

We then compute the desired probabilities:

$$P(X = 17) = F(17) - F(16) = \frac{\binom{17}{3}}{\binom{20}{3}} - \frac{\binom{14}{3}}{\binom{20}{3}} = \frac{2}{19} \approx 0.105$$

$$P(X \ge 17) = 1 - F(17) = 1 - \frac{\binom{17}{3}}{\binom{20}{3}} = \frac{29}{57} \approx 0.509$$