1. Suppose you flip two unfair coins, one of which lands heads with probability 0.4 , and the other lands heads with probability 0.6 . Estimate the probability that both land heads.
```
        R: lount <- 0, for(i in 1:10000){ # count starts at zero
        # generate random numbers between 0 and 1
        r <- runif(1)
        s <- runif(1)
        # if both coins are heads, then increment counter
        if(r<0.4 && s < 0.6){
            count <- count + 1
    }
}
print(count) # this is the number of times both coins land heads
# more concise code to solve the same problem as above
r <- runif(10000) # 10000 flips of the first coin
s <- runif(10000) # 10000 flips of the second coin
count = (r<0.4) & (s<0.6)
#print(count)
print(sum(count))
Mathematic: \(\quad \begin{gathered}\text { count }=0 ;\end{gathered}\)
                                    r=RandomReal [1];
                                    s = RandomReal [1];
                                    If [r<0.4&& s < 0.6, count += 1],
                                    10000]
                                    count
Exact probability: (0.4)(0.6)=0.24
```

2. Use simulation to approximate the probability that at least two sixes appear in three rolls of standard, fair dice.
```
P: # simulate the probability that at least two sixes appears in
# simulate the probability that at least
c <- 0
for(i in 1:10000){
    dice <- sample(1:6, 3, TRUE) # three die rolls
    sixes <- sum(dice == 1) # number of ones in the rolls
    if(sixes| >= 2){
        c <- c + 1 # increment counter
    }
}
print(c/10000)
```

$$
\begin{array}{ll}
\text { Mathematica: } & \text { count }=0 ; \\
& \text { Do }[\\
& \text { dice }=\text { RandomChoice }[\text { Range }[6], 3] ; \\
& \text { sixes }=\operatorname{Count}[\text { dice, 6]; } \\
& \text { If }[\text { sixes } \geq 2, \text { count }+=1], \\
& 10000] \\
& \mathrm{N}[\text { count } / 10000]
\end{array}
$$

Exact Probability:
$P($ at least two sixes $)=P($ exactly two sixes $)+P($ all three sixes $)$

$$
=3\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)+\left(\frac{1}{6}\right)^{3}=\frac{16}{216} \approx 0.074
$$

3. Suppose there are 3000 students at St. Olaf College. Estimate the probability that at least 18 students share the same birthday.
```
R
# simulate the probability that at least 18 people out of 3000 people
    count <- 0
    for(i in 1:10000){
    bdays <- sample(1:365, 3000, TRUE)
    tab <- table(bdays)
    if(max(tab) >= 18){
        count <- count + 1
    }
}
print(count/10000)
```

Mathematic: $\underset{\text { Doit }}{\text { count }}$
days $=$ RandomChoice [Range [365], 3000];
tab $=$ BinCounts[bdays];
If $[\operatorname{Max}[t a b] \geq 18$, count $+=1]$,
10000]
N [count / 10000]

The exact probability is tough to determine, but it's about 0.54 .

