1. A red die and a blue die are rolled. Let $A$ be the event that the red die rolls 2 , let $B$ be the event that the sum of the rolls is 5 , and let $C$ be the event that the sum of the rolls is 7 . Are $A$ and $B$ independent events? How about $A$ and $C$ ?

$$
\begin{aligned}
& \text { First, } P(A)=\frac{1}{6} \text { and } P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{36}}{\frac{4}{36}}=\frac{1}{4} . \\
& \text { Since } P(A) \neq P(A \mid B) \text {, events } A \text { and } B \text { are dependent. } \\
& \text { Second, } P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{\frac{1}{36}}{\frac{6}{36}}=\frac{1}{6} . \\
& \text { Since } P(A)=P(A \mid C) \text {, events } A \text { and } C \text { are independent. }
\end{aligned}
$$

2. A sequence of $n$ independent trials are to be performed. Each trial results in a success with probability $p$ and a failure with probability $1-p$. What is the probability that...
(a) ...all trials result in successes?

Let $A_{i}$ be the event that trial $i$ results in success.
By independence, $P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{n}\right)=\underbrace{p \cdot p \cdots p}_{n \text { factors }}=p^{n}$
(b) ...at least one trials results in a success?

$$
\begin{aligned}
& \text { Probability of no successes: } P\left(A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right)=(1-p)^{n} \\
& \text { Probability of at least one success: } 1-P\left(A_{1}^{\prime} \cap \cdots, A_{n}^{\prime}\right)=1-(1-p)^{n}
\end{aligned}
$$

(c) ...exactly $k$ trials result in successes?
 random. For $k=1,2,3$, let $A_{k}$ be the event that the $k^{\text {th }}$ digit is a 1 on the ball that is drawn.
(a) Are the events $A_{1}, A_{2}$, and $A_{3}$ pairwise independent? Why or why not?

$$
\begin{aligned}
\text { Yes: } & P\left(A_{i}\right)=\frac{1}{2} \quad \text { for any } i \in\{1,2,3\} \\
& P\left(A_{i} \cap A_{j}\right)=\frac{1}{4} \text { for any } i, j \in\{1,2,3\}
\end{aligned}
$$

(b) Are the events $A_{1}, A_{2}$, and $A_{3}$ mutually independent? Why or why not?

$$
\text { No: } \quad P\left(A_{1} \cap A_{2} \cap A_{3}\right)=0 \neq P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)
$$

4. If $A$ and $B$ are independent events with positive probability, show that they cannot be mutually exclusive.

$$
\begin{aligned}
& \text { Given: } P(A)>0, P(B)>0, \text { and } P(A \cap B)=P(A) P(B) . \\
& \text { Thus } P(A \cap B)>0 \text {, so the events can occur simultaneously, } \\
& \text { meaning they are not mutually exclusive. }
\end{aligned}
$$

5. Create an example of three events $A, B, C$ such that $P(A \cap B \cap C)=P(A) P(B) P(C)$ but the events are not mutually independent.

$$
\begin{aligned}
& \text { This is tricky! Trial-and-error is a fine approach. } \\
& \text { Here is one example: } \\
& P(A)=P(B)=P(C)=\frac{1}{2} \\
& P(A \cap B \cap C)=\frac{1}{8}=P(A) P(B) P(C) \\
& \text { However: } \\
& P(A \cap B)=\frac{9}{40} \neq P(A) P(B) \\
& \text { (and similarly for } A \cap C \text { and } B \cap C \text { ) } \\
& A, B \text {, and } C \text { are not pairwise independent, and thus not mutually independent. }
\end{aligned}
$$

