1. A red die and a blue die are rolled. Let *A* be the event that the red die rolls 2, let *B* be the event that the sum of the rolls is 5, and let *C* be the event that the sum of the rolls is 7. Are *A* and *B* independent events? How about *A* and *C*?

First,
$$P(A) = \frac{1}{6}$$
 and $P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{36}}{\frac{4}{36}} = \frac{1}{4}$.
Since $P(A) \neq P(A | B)$, events A and B are dependent.
Second, $P(A | C) = \frac{P(A \cap C)}{P(C)} = \frac{\frac{1}{36}}{\frac{6}{36}} = \frac{1}{6}$.
Since $P(A) = P(A | C)$, events A and C are independent.

- 2. A sequence of *n* independent trials are to be performed. Each trial results in a success with probability *p* and a failure with probability 1 p. What is the probability that...
- (a) ...all trials result in successes?

Let
$$A_i$$
 be the event that trial i results in success.
By independence, $P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1)P(A_2) \dots P(A_n) = \underbrace{p \cdot p \dots p}_{n \text{ factors}} = p^n$

(b) ... at least one trials results in a success?

Probability of no successes:
$$P(A_1' \cap A_2' \cap \dots \cap A_n') = (1-p)^n$$

Probability of at least one success: $1 - P(A_1' \cap \dots \cap A_n') = 1 - (1-p)^n$

(c) ... exactly *k* trials result in successes?

We will
see this
see this
again in
again 2-
Chapter 2-
Thus,
$$P(exactly k successes) = (k) p^k (1-p)^{n-k}$$
.
This factor is important!

- 3. Consider an urn containing four balls, numbered 110, 101, 011, and 000. One ball is drawn at random. For k = 1,2,3, let A_k be the event that the k^{th} digit is a 1 on the ball that is drawn.
 - (a) Are the events A_1 , A_2 , and A_3 pairwise independent? Why or why not?

Yes:
$$P(A;) = \frac{1}{2}$$
 for any $i \in \{1, 2, 3\}$
 $P(A; n A;) = \frac{1}{4}$ for any $i, j \in \{1, 2, 3\}$

(b) Are the events A_1 , A_2 , and A_3 mutually independent? Why or why not?

No:
$$P(A_1 \land A_2 \land A_3) = O \neq P(A_1)P(A_2)P(A_3)$$

4. If *A* and *B* are independent events with positive probability, show that they cannot be mutually exclusive.

Given:
$$P(A) > 0$$
, $P(B) > 0$, and $P(A \cap B) = P(A)P(B)$.
Thus $P(A \cap B) > 0$, so the events can occur simultaneously,
meaning they are not mutually exclusive.

5. Create an example of three events *A*, *B*, *C* such that $P(A \cap B \cap C) = P(A)P(B)P(C)$ but the events are not mutually independent.

A, B, and C are not pairwise independent, and thus not mutually independent.