Warm-Up: A red die and a blue die are rolled. Let A be the event that the red die rolls 2 , let B be the event that the sum of the rolls is 5 , and let C be the event that the sum of the rolls is 7 . Are A and B independent events? How about A and C ?

$$
\begin{aligned}
& P(A)=\frac{1}{6} \\
& P(A \mid B)=\frac{1}{4} \\
& P(A) \neq P(A \mid B) \text {, so } \\
& \text { events } A \text { and } B \text { are dependent }
\end{aligned}
$$

$P(A \mid C)=\frac{1}{6}=P(A)$, so events A and C are independent
$\underbrace{H H H \ldots H}_{k} \underbrace{T T T \ldots T}_{n-k}$ probability $p^{k}(1-p)^{n-k}$
HT $\underbrace{H H \cdots H}_{k-1} \underbrace{T T \cdots T}_{n-k-1}$ probability: $p(1-p) p^{k-1}(1-p)^{n-k-1}=p^{k}(1-p)^{n-k}$
HTHTHTHHTTT probability: $p^{k}(1-p)^{n-k}$
K Heads
$n-k$ Tails

How many arrangements of k heads and $n-k$ tails?

choose k of them to be Heads in $\binom{n}{k}$ ways

Answer to $2(c):\binom{n}{k} p^{k}(1-p)^{n-k}$

Mutually exclusive (or disjoint): canst both happen simultaneously
If A and B are mutually exclusive, then $P(A \cap B)=O$.

