Warm-Up: A red die and a blue die are rolled. Let *A* be the event that the red die rolls 2, let *B* be the event that the sum of the rolls is 5, and let *C* be the event that the sum of the rolls is 7. Are *A* and *B* independent events? How about *A* and *C*?

	0			2	3	4	5	6
$P(A) = \frac{1}{6}$	sum of 2 dice		2					
•	7 /100	2	3	4	5	6	7	8
$P(A \mid B) = \frac{1}{4}$		3	4	5	6	7	8	9
		4	5	6	7	8	9	Ю
$P(A) \cdot D(A \mid A)$		5	6	7	8	9	סו	u
$P(A) \neq P(A \mid B)$		6	7	8	9	ID	11	12
events A and B are	dependent						1	-

$$f(A|C) = \frac{1}{6} = p(A)$$
, so events A and C are independent

HHH...H TTT...T probability
$$p^{k}(1-p)^{n-k}$$

HT HH...H TT...T probability: $p(1-p)$ $p^{k-1}(1-p)^{n-k-1} = p^{k}(1-p)^{n-k}$

HT HTHT HH TTT probability: $p^{k}(1-p)^{n-k}$
 k Heads
 $n-k$ Toils

Day6 Page 1

How many arrangements of k heads and n-k tails?

them to be tleads in (n) ways

Answer to 2(c): $\binom{n}{k} p^k (1-p)^{n-k}$

Mutually exclusive (or disjoint):

can't both happen simultaneously

If A and B are mutually exclusive, then $P(A \cap B) = O$.