1. The probability that Prisca studies for a test is 0.8 . The probability that she studies and passes the test is 0.7 . If Prisca studies, what is the probability that she passes the test?

$$
\begin{gathered}
\text { Events: } A: \text { Prisca studies } \quad \text { B: Prisca passes } \\
\begin{array}{c}
\text { Conditional } \\
\text { Probability }
\end{array} \longrightarrow P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{0.7}{0.8}=\frac{7}{8}
\end{gathered}
$$

2. A machine produces parts, 10% of which are defective. An inspector is able to remove 95% of the defective parts. What is the probability that a part is defective and removed by the inspector?

$$
\begin{array}{ll}
\text { Events: part is defective; } \quad D: \quad R: \text { part is removed } \\
\text { We know: } P(D)=0.1, \quad P(R \mid D)=0.95 \\
\underbrace{P(R \cap D)=}_{\text {Multiplication Rule }} & P(R \mid D) P(D)
\end{array}=(0.95)(0.1)=0.095
$$

3. A soccer team wins 60% of its games when it scores the first goal, and 30% of its games when the opposing team scores first. If the team scores first in 40% of its games, what percent of its games does it win?

$$
\begin{aligned}
& \text { Events: } \quad W: \text { win, } \quad F \text { : score first } \\
& \text { We know: } \quad P(F)=0.4, \quad P(W \mid F)=0.6, \quad P\left(W \mid F^{\prime}\right)=0.3
\end{aligned}
$$

Find $P(W)$:

$$
\begin{aligned}
P(W) & =P(W \cap F)+P\left(W \cap F^{\prime}\right) \\
& =P(W \mid F) P(F)+P\left(W \mid F^{\prime}\right) P\left(F^{\prime}\right) \\
& =(0.6)(0.4)+(0.3)(0.6) \\
& =0.42
\end{aligned}
$$

4. A factory uses 3 machines to produce certain items. Machine A produces 50% of the items, 6% of which are defective. Machine B produces 30% of the items, 4% of which are defective. Machine C produces 20% of the items, 3% of which are defective.
(a) What is the probability that a randomly-selected item is defective?

Events: A: machine A, B: machine B, C: machine C D : defective

Find $P(D)$:

$$
\begin{aligned}
P(D) & =P(D \mid A) P(A)+P(D \mid B) P(B)+P(D \mid C) P(C) \\
& =(0.06)(0.5)+(0.04)(0.3)+(0.03)(0.2) \\
& =0.048
\end{aligned}
$$

(b) If an item is defective, what is the probability that it was produced by Machine A?

$$
\begin{aligned}
& P(A \mid D)=\frac{P(A \cap D)}{P(D)}=\frac{P(D \mid A) P(A)}{P(D)}=\frac{(0.06)(0.5)}{0.048}=\frac{5}{8} \\
& \text { Bayes' Theorem! }
\end{aligned}
$$

5. Suppose that a patient is tested for a disease. Let A be the event that the test is positive, and let D be the event that the patient actually has the disease. Further suppose that:
$P(A \mid D)=0.99$ (sensitivity: probability of a positive test if the patient has the disease)
$P\left(A^{\prime} \mid D^{\prime}\right)=0.99$ (specificity: probability of a negative test if the patient doesn't have the disease)
(a) Rare disease: If $P(D)=0.01$, what is the probability that a patient who tests positive actually has the disease?

$$
P(D \mid A)=\frac{P(A \mid D) P(D)}{P(A)}=\frac{P(A \mid D) P(D)}{P(A \mid D) P(D)+P\left(A \mid D^{\prime}\right) P\left(D^{\prime}\right)}=\frac{(0.99)(0.1)}{(0.99)(0.01)+(0.01)(0.99)}=\frac{1}{2}
$$

Imagine testing 1000 people: 990 without the disease and 10 with the disease

- Of the 10 with the disease, all test positive
- Of the 990 without disease, about 10 are false positives $\} \frac{\frac{10}{20}}{}$ positive tests
(b) Common disease: If $P(D)=0.1$, what is the probability that a patient who tests positive actually has the disease?

$$
P(D \mid A)=\frac{(0.99)(0.1)}{(0.99)(0.1)+(0.01)(0.9)}=0.917
$$

Imagine testing 1000 people: 900 without the disease and 100 with the disease

- Of the 900 without the disease, about 9 are false positives $\int \frac{108}{108} \begin{aligned} & \text { positive tests } \\ & \text { are true } \\ & \text { positives }\end{aligned}$ positives

BONUS: Box 1 contains 5 red balls and box 2 contains 5 blue balls. Balls are randomly removed in the following manner: after each removal from box 1 , a ball is taken from box 2 (if box 2 has any balls) and placed in box 1 . This process continues until all balls have been removed (so ten removals total). What is the probability that the final ball removed from box 1 is red?

This problem is tricky! It won't be on the exam.
Number the red balls 1, 2,3,4,5. Let R_{i} be the event that red ball i is the final ball selected.

Now focus on a particular red ball, say ball 1. Let N_{j} be the event that this ball is not removed on the $j^{\text {th }}$ draw from box 1 , for $j \in\{1,2,3,4,5\}$.
Then: $P\left(R_{1}\right)=P\left(N_{1} \cap N_{2} \cap N_{3} \cap N_{4} \cap N_{5} \cap R_{1}\right)$
$=P\left(N_{1}\right) \cdot P\left(N_{2} \mid N_{1}\right) \cdot P\left(N_{3} \mid N_{1} \cap N_{2}\right) \cdot P\left(N_{4} \mid N_{1} N_{2} \cap N_{3}\right)$ - $P\left(N_{5} \mid N_{1} \cap N_{2} \cap N_{3} \cap N_{4}\right) \cdot P\left(R_{1} \mid N_{1} \cap N_{2} \cap N_{3} \cap N_{4} \cap N_{5}\right)$

$$
=\frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{1}{5}=\left(\frac{4}{5}\right)^{5} \cdot \frac{1}{5}
$$

$$
\text { The first } 5 \text { draws occur when there } \text { Probability that red ball } 1 \text { is selected }
$$

$$
\text { are } 5 \text { balls in Box } 1 \text {. last among the last } 5 \text { draws from }
$$

Similarly, $P\left(R_{i}\right)=\left(\frac{4}{5}\right)^{5} \cdot \frac{1}{5}$ for $i \in\{2,3,4,5\}$.
Since the events $R_{1}, R_{2}, \ldots, R_{5}$ are disjoint:
$P($ some red ball is selected last $)=P\left(R_{1}\right)+P\left(R_{2}\right)+\cdots+P\left(R_{5}\right)$
$=5 \cdot\left(\frac{4}{5}\right)^{5} \cdot \frac{1}{5}=\left(\frac{4}{5}\right)^{5}$
GENERALIZATION: If we start with n red balls and n blue balls, the probability that a red ball is selected last is $\left(\frac{n-1}{n}\right)^{n}$, which converges to $\frac{1}{e}$ as $n \rightarrow \infty$.

