1. How many ways can you place 9 (identical) balls in 4 different boxes?

$$
\begin{aligned}
& \text { Select } 9 \text { boxes from 4, with replacement, order not important. } \\
& n=4, k=9 \quad \text { number of ways: }\binom{9+4-1}{9}=\frac{12!}{9!3!}=220
\end{aligned}
$$

2. How many different dominoes can be formed with the numbers $1,2, \ldots, 6$? How about if the numbers $1,2, \ldots, 12$ are used?

- Choose 2 numbers from 6, with replacement, order unimportant,

$$
\text { in }\binom{2+6-1}{2}=\binom{7}{2}=21 \text { ways }
$$

- For numbers 1,.., 12: $\binom{2+12-1}{2}=\binom{13}{2}=78$ ways

3. How many ways can 7 identical jobs be assigned to 10 (distinct) people...
(a) ...if no person can do multiple jobs?

$$
\begin{aligned}
& \text { Choose } 7 \text { of } 10 \text { people: }\binom{10}{7}=120 \text { ways } \\
& \text { (without replacement, order not important) }
\end{aligned}
$$

(b) ...if a single person can do multiple jobs?

$$
\begin{aligned}
& \text { Now choose } 7 \text { of } 10 \text { people : } \quad\binom{7+10-1}{7}=\binom{16}{7}=11,440 \text { ways } \\
& \text { with replacement, order not } \\
& \text { important }
\end{aligned}
$$

4. Seven awards are to be distributed to 10 (distinguishable!) mathletes. How many different distributions are possible if
(a) The awards are identical and nobody gets more than one?

$$
\text { Choose } 7 \text { out of 10: }\binom{10}{7}=120
$$

(b) The awards are different and nobody gets more than one?

$$
\text { Permutations of } 7 \text { selected from 10: } \frac{10!}{3!}=604,800
$$

(c) The awards are identical and anybody can get any number of awards?

Selection with replacement, order doesn't matter.

$$
\binom{7+10-1}{7}=\binom{16}{7}=11,440
$$

5. Consider the 20 "integer lattice points" (a, b) in the $x y$-plane given by $0 \leq a \leq 4$ and $0 \leq b \leq 3$, with a and b integers. (Draw a little picture.) Suppose you want to walk along the lattice points from $(0,0)$ to $(4,3)$, and the only legal steps are one unit to the right or one unit up.
(a) How many legal paths are there from $(0,0)$ to $(4,3)$?

$$
\begin{aligned}
& \text { Every legal path involves } 7 \text { steps, } 3 \text { of which are "up." } \\
& \text { Choose any } 3 \text { of the } 7 \text { steps to be "up" in }\binom{7}{3}=35 \text { ways. }
\end{aligned}
$$

(b) How many legal paths from $(0,0)$ to $(4,3)$ go through the point $(2,2)$?

$$
\begin{aligned}
& \text { Reasoning as before, there are }\binom{4}{2}=6 \text { legal paths from }(0,0) \text { to }(2,2) \\
& \text { and }\binom{3}{1}=3 \text { legal paths from }(2,2) \text { to }(4,3) . \\
& \text { Thus, there are } 6 \cdot 3=18 \text { paths in all. }
\end{aligned}
$$

6. A box contains 5 red, 6 yellow, and 7 blue balls. The box is stirred and five balls are chosen without replacement. What is the probability that the 5 balls chosen include at least one of each color? Do this in steps:
(a) Let E_{1} be the event that no red ball is chosen, E_{w} be the event that no yellow ball is chosen, and E_{3} be the event that no blue ball is chosen. Find the probabilities $P\left(E_{1}\right)$, $P\left(E_{2}\right)$, and $P\left(E_{3}\right)$.

$$
\begin{aligned}
& \text { There are }\binom{18}{5} \text { ways to choose } 5 \text { balls (of any colors). } \\
& \text { There are }\binom{13}{5} \text { ways to choose } 5 \text { balls, none of which are red. } \\
& \text { Thus, } P\left(E_{1}\right)=\frac{\binom{13}{5}}{\binom{18}{5}}=\frac{143}{952} \approx 0.150 \text {. } \\
& \text { Similarly, } P\left(E_{2}\right)=\frac{\binom{12}{5}}{\binom{18}{5}}=\frac{11}{119} \approx 0.092 \text { and } P\left(E_{3}\right)=\frac{\binom{11}{5}}{\binom{18}{5}}=\frac{11}{204} \approx 0.054
\end{aligned}
$$

(b) Find the probabilities $P\left(E_{1} \cap E_{2}\right), P\left(E_{1} \cap E_{3}\right), P\left(E_{2} \cap E_{3}\right)$, and $P\left(E_{1} \cap E_{2} \cap E_{3}\right)$.

$$
\begin{aligned}
& E_{1} \cap E_{2} \text { is the event that } 5 \text { blue balls are chosen, so } \\
& \qquad P\left(E_{1} \cap E_{2}\right)=\frac{\binom{7}{5}}{\binom{18}{5}}=\frac{1}{408} \approx 0.002
\end{aligned}
$$

Similarly, $P\left(E_{1} \cap E_{3}\right)=\frac{\binom{6}{5}}{\binom{18}{5}}=\frac{1}{1428} \approx 0.0007$

$$
\text { and } P\left(E_{2} \cap E_{3}\right)=\frac{\binom{5}{5}}{\binom{18}{5}}=\frac{1}{8568} \approx 0.0001 \text {. }
$$

Since some balls must be chosen, $P\left(E_{1} \cap E_{2} \cap E_{3}\right)=O$.
(c) Use inclusion-exclusion to find $P\left(E_{1} \cup E_{2} \cup E_{3}\right)$.

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup E_{3}\right)= & P\left(E_{1}\right) \\
& +P\left(E_{2}\right)+P\left(E_{3}\right)-P\left(E_{1} \cap E_{2}\right)-P\left(E_{1} \cap E_{3}\right) \\
& \left.-E_{3}\right)+P\left(E_{1} \cap E_{2} \cap E_{3}\right) \\
= & \frac{359}{1224} \approx 0.293
\end{aligned}
$$

(d) Use the preceding result to answer the original question.

$$
\begin{aligned}
P(\text { at least one of each color }) & =1-P\left(E_{1} \cup E_{2} \cup E_{3}\right) \\
& =1-\frac{359}{1224}=\frac{865}{1224} \approx 0.707
\end{aligned}
$$

BONUS: (You don't need to know how to do these problems.)
(a) How many ways can 24 students be divided into 4 groups of equal size?

Choose the first group in $\binom{24}{6}$ ways, the second group in $\binom{18}{6}$ ways, the third group in $\binom{12}{6}$ ways, and the fourth group in $\binom{6}{6}=1$ way. Since the order of group selection doesn't matter, the number of possible subdivisions is:

$$
\frac{\binom{24}{6}\binom{18}{6}\binom{12}{6}\binom{6}{6}}{4!}=96,197,645,544
$$

(b) What is the probability that a randomly chosen arrangement of the letters in MISSISSIPPI contains 4 consecutive Is?

The word MISSISSIPPI has 11 letters, including $4 S_{s}, 4 I_{s}$, and $2 P_{s}$.
The total number of arrangements of these letters is $\frac{11!}{4!4!2!}=34,650$.
To find the number of arrangements with 4 consecutive $I s$, treat the

$$
\text { Is as a single block: } \frac{8!}{4!2!}=840 \text { arrangements. }
$$

Thus, the desired probability is $\frac{840}{34,650}=\frac{4}{165} \approx 0.024$

