Binomial CoEFficients: A closer look
We've said $\binom{n}{k}$ is "n choose k ", the number of ways of selecting k items from n possibilities without replacement, order not important.
$\int^{\frac{0}{10 / 2} / \pi^{2}}$

Consider: $(a+b)^{3}=(a+b)(a+b)(a+b)=1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}$

$$
\left.\left.\begin{array}{l}
\text { select either a or } b \tag{3}\\
\text { from each factor }
\end{array}\right\} \begin{array}{l}
1 \\
3
\end{array}\right) \quad\binom{3}{2}
$$

More generally: $\left.\begin{array}{c}(a+b)^{n}=\begin{array}{c}\left(\begin{array}{l}n \\ n \\ \uparrow\end{array}\right) \\ 1\end{array} a^{n}+\binom{n}{n-1} a^{n-1} b+\binom{n}{n-2} a^{n-2} b^{2}+\cdots+\binom{n}{2} a^{2} b^{n-2}+\binom{n}{1} a b^{n-1}+\binom{n}{0} b^{n} \\ 1\end{array} \quad \begin{array}{c}n \\ n \\ k\end{array}\right)=\frac{n!}{k!(n-k)!}$
Binomial coefficients also appear in Pascal's Triangle
why?

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad \begin{gather*}
1 \\
1 \\
1
\end{gather*} \quad 1 \longleftrightarrow 314
$$

Selecting k items

