1. For each of the following experiments, state the sample space and any three events:

(a) A coin is flipped until heads appears, and the number of flips is recorded.

$$S = \{1, 2, 3, 4, ...\} \cup \{\infty\}$$

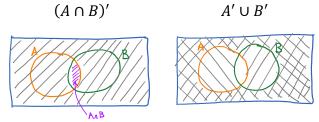
Controme that heads never appears.
Some events: $\{13, \{2, 4, 6, 8, ...\}, \{2, 3, 5, 7\}$

(b) A real number is selected between 0 and 1.

S is the interval
$$(0, 1)$$

some events: $\{\frac{1}{2}\}, (0, \frac{1}{2}), (\frac{1}{9}, \frac{3}{4})$

2. Let *A* and *B* be some events in a sample space. Draw Venn diagrams to illustrate each of the following events:



How do your diagrams illustrate one of De Morgan's Laws?

$$(A \cap B)' = A' \cup B'$$
 the complement of an intersection
is a union of complements

3. Write down probability Axiom 3. Let $A_i = \emptyset$ for all $i \in \{1, 2, 3, ...\}$. Explain why this implies $P(\emptyset) = 0$.

4. The **Complement Rule** says that for any event *A*, P(A) = 1 - P(A'). (This can be proved using Axiom 3.) Show how the Complement Rule implies that $P(A) \le 1$ for any event *A*.

By Axiom 1,
$$P(A') \ge 0$$
. Then $-P(A') \le 0$ and $1-P(A') \le 1$.
But $P(A) = 1-P(A')$ by the Complement Rule.
Thus, $P(A) = 1-P(A') \le 1$.
 $P(A) \le 1$ is called the NUMERIC BOUND.

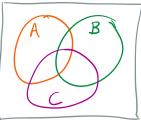
5. If *A* and *B* are disjoint, Axiom 3 implies that $P(A \cup B) = P(A) + P(B)$. If *A* and *B* are *not* disjoint, what is the relationship between $P(A \cup B)$, $P(A \cap B)$, P(A), and P(B)?

Venn Diagram:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

ADDITION RULE

6. Generalize your answer from #5 above to three sets. That is, what can you say about $P(A \cup B \cup C)$?



BONUS: If $A \subseteq B$ (meaning that *A* is a subset of *B*), show that $P(A) \leq P(B)$.

Since
$$A \leq B$$
, $B = A \cup (A' \cap B)$.
Note that A and A' \cap B are disjoint.
Then $P(B) = P(A) + P(A' \cap B)$
Since $P(A' \cap B) \geq 0$, we conclude that $P(A) \leq P(B)$.