1. For each of the following experiments, state the sample space and any three events.
(a) A coin is flipped until heads appears, and the number of flips is recorded.

$$
S=\left\{H, T H, T H, \ldots, T^{n} H, \ldots\right\} \text { or } \mathbb{N}^{+}=\{1,2,3,4, \ldots\}
$$

events:

$$
\{H\} \quad\left\{T^{G} H\right\}
$$

$$
\{49\}
$$

first heads occurs on a even numbered flip $=\{2,4,6,8, \ldots\}$

$$
\{2,3,5,7,11, \ldots\}
$$

(b) A real number is selected between 0 and 1 .

$$
S=\{x \in \mathbb{R} \mid 0<x<1\}=(0,1)
$$

Cinterval notation
event: $\{0.1\} \quad\{0.2\}$

$$
\begin{aligned}
& \left\{x \left\lvert\, \frac{1}{e}<x<\gamma\right.\right\} \\
& \{x \mid x \in \mathbb{Q}\} \\
& \\
& \left\{\begin{array}{l}
\text { rational }
\end{array}\right.
\end{aligned}
$$

2. Let A and B be some events in a sample space. Draw Venn diagrams to illustrate each of the following events:

$$
(A \cap B)^{\prime}
$$

$$
A^{\prime} \cup B^{\prime}
$$

How do your diagrams illustrate one of De Morgan's Laws?

3. Write down probability Axiom 3. Let $A_{i}=\emptyset$ for all $i \in\{1,2,3, \ldots\}$. Explain why this implies $P(\varnothing)=0$.
4. The Complement Rule says that for any event $A, P(A)=1-P\left(A^{\prime}\right)$. (This can be proved using Axiom 3.) Show how the Complement Rule implies that $P(A) \leq 1$ for any event A.
5. If A and B are disjoint, Axiom 3 implies that $P(A \cup B)=P(A)+P(B)$. If A and B are not disjoint, what is the relationship between $P(A \cup B), P(A \cap B), P(A)$, and $P(B)$?
6. Generalize your answer from \#5 above to three sets. That is, what can you say about $P(A \cup B \cup C)$?
