1. Let $\phi(x)=\alpha f(x)+\beta g(x)$. Under what conditions on the constants α and β will the $\phi(x)$ be a pdf for all possible pdfs $f(x)$ and $g(x)$?

$$
\begin{aligned}
& \text { Since } f \text { and } g \text { are pdfs: } \\
& \qquad f(x) \geq 0, \quad g(x) \geq 0, \int_{-\infty}^{\infty} f(x) d x=1, \text { and } \int_{-\infty}^{\infty} g(x) d x=1 \\
& \text { If } \alpha f(x)+\beta g(x) \text { is a pdf, for all possible pdf } f(x) \text { and } g(x) \text {, } \\
& \text { it must be that } \alpha \geq 0, \beta \geq 0 \text {, and: } \\
& \qquad 1=\int_{-\infty}^{\infty}\left(\alpha f(x)+\beta g(x) d x=\alpha \int_{-\infty}^{\infty} f(x) d x+\beta \int_{-\infty}^{\infty} g(x) d x=\alpha+\beta\right. \\
& \text { So } \alpha+\beta=1 .
\end{aligned}
$$

2. Let $X \sim \operatorname{Exp}(\lambda), 0 \leq s$ and $0 \leq t$. Since X is memoryless, is it true that $(X>s+t)$ and ($X>t$) are independent events?

$$
\begin{aligned}
& \text { Memoryless Property: } P(X>s+t \mid X>t)=P(X>s) \\
& \text { Since } P(X>s) \neq P(X>s+t) \text {, we have } \\
& \qquad P(X>s+t \mid X>t) \neq P(X>s+t), \\
& \text { so the events } X>s+t \text { and } X>t \text { are not independent. }
\end{aligned}
$$

3. Let X and Y be id exponential random variables with parameter λ. Let (R, Θ) denote the polar coordinates of (X, Y). What is the joint density of R and Θ ?

The joint density of X and Y is $f(x, y)=\lambda^{2} e^{-\lambda(x+y)}$.
Since X and Y are nonnegative, (X, Y) is in the first quadrant, so $0 \leq R$ and $0 \leq \theta \leq \frac{\pi}{2}$.

As in the video on joint transformations, the transformation theorem gives the joint density of R and θ

$$
\begin{aligned}
g(r, \theta) & =f(r \cdot \cos \theta, r \cdot \sin \theta) \cdot r \\
& =\lambda^{2} e^{-\lambda r(\cos \theta+\sin \theta)} \cdot r \quad \text { for } \quad 0 \leq r, 0 \leq \theta \leq \frac{\pi}{2} .
\end{aligned}
$$

4. Suppose B and C are id Unif $[0,1]$. Find the probability that the roots of the equation $x^{2}+B x+C=0$ are real.

5. Alina makes 100 flips of a fair coin, and Dennis makes 99 flips of a fair coin. What is the probability that Alina gets more heads than Dennis?

Let A be the number of heads that Alina gets in the first 99 flips.
Let D be the number of heads that Dennis gets in 99 flips.
Let $q=P(A>D)$. By symmetry, $q=P(D>A)$ also.
Then $P(A=D)=1-2 q$.
After 99 coin flips, Alina still gets one more coin flip.
Thus, Alina gets more heads than Dennis if $A>D$ or $(A=D$ and Alina's last flip is heads).
So: $\quad P($ Alina gets more heads than Dennis $)=q+(1-2 q) \cdot \frac{1}{2}$

$$
=q+\frac{1}{2}-q=\frac{1}{2}
$$

6. X and Y are ied Unif $[0,1]$. What is the probability that the closest integer to $\frac{X}{Y}$ is even?
(a) $\frac{X}{Y}$ is closest to zero if $\frac{X}{Y}<\frac{1}{2}$, or $2 X<Y$.

$$
P(2 X<Y)=\frac{1}{4}
$$

(b) If k is a positive integer, then $\frac{X}{Y}$ is

$$
\begin{aligned}
& \text { closest to } 2 k \text { if } \frac{4 k-1}{2}<\frac{x}{y}<\frac{4 k+1}{2} . \\
& P\left(\frac{4 k-1}{2}<\frac{x}{Y}<\frac{4 k+1}{2}\right)=P\left(\frac{2 x}{4 k+1}<Y<\frac{2 x}{4 k-1}\right)=\frac{1}{4 k-1}-\frac{1}{4 k+1}
\end{aligned}
$$

Combining parts (a) and (b), we have:

$$
\begin{aligned}
& P\left(\text { integer closest to } \frac{x}{y} \text { is even }\right)=\frac{1}{4}+\sum_{k=1}^{\infty}\left(\frac{1}{4 k-1}-\frac{1}{4 k+1}\right) \\
& =\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}-\frac{1}{13}+\cdots \\
& \text { Chis sum is } 1-\frac{\pi}{4} . \\
& \quad \text { (Write the Taylor series for artan }(x) \text { at } x=\frac{\pi}{4 .} \text {) } \\
& =\frac{1}{4}+1-\frac{\pi}{4}=\frac{5-\pi}{4}
\end{aligned}
$$

$$
\begin{gathered}
\text { Mathematical } \\
\text { can tell you } \\
\text { this is } \\
\frac{5-\pi}{4} .
\end{gathered}
$$

