Practice Problems on Transformations of Random Variables

Math 262

1. Let X have pdf given by $f_{X}(x)=\frac{x+1}{2}$ for $-1 \leq x \leq 1$. Find the density of $Y=X^{2}$.
2. Let Y have pdf given by $f_{Y}(y)=2(1-y)$ for $0 \leq y \leq 1$.
(a) Find the density of $U_{1}=2 Y-1$.
(b) Find the density of $U_{2}=1-2 Y$.
(c) Find the density of $U_{3}=Y^{2}$.
3. Let $X \sim \operatorname{Unif}[0,1]$. Find the density of $U=\sqrt{X}$.
4. Two sentries are sent to patrol a road that is 1 mile long. The sentries are sent to points chosen independently and uniformly along the road. Find the probability that the sentries will be less than $\frac{1}{2}$ mile apart when they reach their assigned posts.
5. The joint distribution for the lifetimes of two different types of components operating in a system is given by

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}\frac{1}{8} y_{1} e^{-\left(y_{1}+y_{2}\right) / 2} & \text { if } y_{1}>0, y_{2}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the density function for the ratio $U=\frac{Y_{2}}{Y_{1}}$.
6. Suppose X and Y are independent exponential rvs with parameter λ. Find the joint density of $V=\frac{X}{Y}$ and $W=X+Y$. Use the joint density to find the marginal distributions.
7. Let X and Y have joint density $f(x, y)$. Let (R, Θ) be the polar coordinates of (X, Y).
(a) Give a general expression for the joint density of R and Θ.
(b) Suppose X and Y are independent with $f(x)=2 x$ for $0<x<1$ and $f(y)=2 y$ for $0<y<1$. Use your result to find the probability that (X, Y) lies inside the circle of radius 1 centered at the origin.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from the uniform distribution on $[0,1]$. Let Y_{1} and Y_{n} be the smallest and largest, respectively, among the X_{i}. Find the pdf for the range $R=Y_{n}-Y_{1}$.
Hint: The joint pdf for Y_{1} and Y_{n} is $g\left(y_{1}, y_{n}\right)=n(n-1)\left(y_{n}-y_{1}\right)^{n-2}$ for $0 \leq y_{1} \leq y_{n} \leq 1$. (See exercise 141 in Chapter 4 of Carlton and Devore.)

