Practice Problems on Transformations of Random Variables Math 262

- 1. Let X have pdf given by $f_X(x) = \frac{x+1}{2}$ for $-1 \le x \le 1$. Find the density of $Y = X^2$.
- 2. Let Y have pdf given by $f_Y(y) = 2(1-y)$ for $0 \le y \le 1$.
 - (a) Find the density of $U_1 = 2Y 1$.
 - (b) Find the density of $U_2 = 1 2Y$.
 - (c) Find the density of $U_3 = Y^2$.
- 3. Let $X \sim \text{Unif}[0, 1]$. Find the density of $U = \sqrt{X}$.
- 4. Two sentries are sent to patrol a road that is 1 mile long. The sentries are sent to points chosen independently and uniformly along the road. Find the probability that the sentries will be less than $\frac{1}{2}$ mile apart when they reach their assigned posts.
- 5. The joint distribution for the lifetimes of two different types of components operating in a system is given by

$$f(y_1, y_2) = \begin{cases} \frac{1}{8}y_1 e^{-(y_1 + y_2)/2} & \text{if } y_1 > 0, y_2 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Find the density function for the ratio $U = \frac{Y_2}{Y_1}$.

- 6. Suppose X and Y are independent exponential rvs with parameter λ . Find the joint density of $V = \frac{X}{Y}$ and W = X + Y. Use the joint density to find the marginal distributions.
- 7. Let X and Y have joint density f(x, y). Let (R, Θ) be the polar coordinates of (X, Y).
 - (a) Give a general expression for the joint density of R and Θ .
 - (b) Suppose X and Y are independent with f(x) = 2x for 0 < x < 1 and f(y) = 2y for 0 < y < 1. Use your result to find the probability that (X, Y) lies inside the circle of radius 1 centered at the origin.
- 8. Let X_1, X_2, \ldots, X_n denote a random sample from the uniform distribution on [0, 1]. Let Y_1 and Y_n be the smallest and largest, respectively, among the X_i . Find the pdf for the range $R = Y_n Y_1$.

Hint: The joint pdf for Y_1 and Y_n is $g(y_1, y_n) = n(n-1)(y_n - y_1)^{n-2}$ for $0 \le y_1 \le y_n \le 1$. (See exercise 141 in Chapter 4 of Carlton and Devore.)