BIVARIATE TRANSFORMATION THEOREM
Let X_{1} and X_{2} have joint density $f\left(x_{1}, x_{2}\right)$.
Let $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$. \leftarrow Transformation
Also: $X_{1}=V_{1}\left(Y_{1}, Y_{2}\right)$ and $X_{2}=V_{2}\left(Y_{1}, Y_{2}\right)$ Inverse transformation.
Let $M=\left[\begin{array}{cc}\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} \\ \frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}}\end{array}\right] \leftarrow$ the Jacobian matrix
Then the joint density of I_{1} and I_{2} is given by

$$
g\left(y_{1}, y_{2}\right)=\underset{\uparrow}{f}\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right) \cdot|\operatorname{det}(M)|
$$

Compare to the 1-var. transformation theater:

$$
f_{Y}(y)=f_{X}(h(y)) \cdot\left|h^{\prime}(y)\right|
$$

EXAMPLE: X_{1} and X_{2} are ind Unif $[0,1]$.
Let $I_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$.

$$
y_{1}=u_{1}\left(x_{1}, x_{2}\right)
$$

Joint density of X_{1}, X_{2} :

$$
y_{2}=u_{2}\left(x_{1}, x_{2}\right)
$$

the transformation is linear:

$$
\begin{aligned}
{\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] } & =\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right] \\
\left(x_{1}, x_{2}\right) & \longrightarrow\left(y_{1}, y_{2}\right) \\
(0,0) & \longrightarrow(0,0) \\
(1,0) & \longrightarrow(1,1) \\
(1,1) & \longrightarrow(2,0) \\
(0,1) & \longrightarrow(1,-1)
\end{aligned}
$$

INVERSE: $\quad X_{1}=V_{1}\left(Y_{1}, Y_{2}\right), \quad X_{2}=V_{2}\left(Y_{1}, I_{2}\right)$

$$
\begin{aligned}
& y_{2} \leq 2-y_{1} \\
& y_{2} \geq-y_{1} \\
& y_{2} \geq y_{1}-2
\end{aligned}
$$

so $v_{1}\left(y_{1}, y_{2}\right)=\frac{1}{2}\left(y_{1}+y_{2}\right)$ and $v_{2}\left(y_{1}, y_{2}\right)=\frac{1}{2}\left(y_{1}-y_{2}\right)$
Then: $M=\left[\begin{array}{ll}\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} \\ \frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right]$
The joint density of I_{1} and I_{2} is:

$$
g\left(y_{1}, y_{2}\right)=f\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right) \cdot|\operatorname{det}(M)|=1 \cdot\left|-\frac{1}{2}\right|=\frac{1}{2}
$$

On the region found above.

1. Suppose X_{1} and X_{2} are independent exponential rvs with parameter λ. exponential
(a) Find the joint density of $Y_{1}=\frac{x_{1}}{X_{2}}$ and $Y_{2}=X_{1}+X_{2}$. $\lambda e^{-\lambda x}$
Joint density of $X_{1}, X_{2}: \quad f\left(x_{1}, x_{2}\right)=\lambda^{2} e^{-\lambda\left(x_{1}+x_{2}\right)}$ for $x_{1}>0, x_{2}>0$

Invert the transformation:

$$
Y_{1}=\frac{X_{1}}{X_{2}} \quad \text { so } \quad X_{1}=Y_{1} X_{2}
$$

and then $Y_{2}=X_{1}+X_{2}=Y_{1} X_{2}+X_{2}$,

Y_{1} and Y_{2} take on any pair of positive values.

Matrix $M=\left[\begin{array}{cc}\frac{y_{2}}{\left(y_{1}+1\right)^{2}} & \frac{y_{1}}{y_{1}+1} \\ \frac{-y_{2}}{\left(y_{1}+1\right)^{2}} & \frac{1}{y_{1}+1}\end{array}\right]$ so $\operatorname{det}(M)=\frac{y_{2}}{\left(y_{1}+1\right)^{3}}-\frac{-y_{1} y_{2}}{\left(y_{1}+1\right)^{3}}=\frac{y_{2}}{\left(y_{1}+1\right)^{2}}$
Joint dasity of Y_{1}, Y_{2} :

We stopped here in class, but the following solutions are provided as additional examples:
(b) Use the joint density to find the marginal densities of Y_{1} and Y_{2}.

Integrate: $\quad g_{y_{1}}\left(y_{1}\right)=\int_{0}^{\infty} g\left(y_{1}, y_{2}\right) d y_{2}=\frac{1}{\left(1+y_{1}\right)^{2}} \quad$ and $\quad g_{y_{2}}\left(y_{2}\right)=\int_{0}^{\infty} g\left(y_{1}, y_{2}\right) d y_{1}=\lambda^{2} y_{2} e^{-\lambda y_{2}}$
2. Let X and Y have joint density $f(x, y)$. Let (R, Θ) be the polar coodinates of (X, Y).
(a) Give a general expression for the joint density of R and Θ.

$$
\begin{aligned}
& \text { Note that } R=\sqrt{X^{2}+Y^{2}} \text { and } \theta=\arctan \left(\frac{Y}{X}\right), \quad X=R \cos \theta \text { and } Y=R \sin \theta \\
& \text { Jacobian determinant: } \\
& \qquad|M|=\left|\begin{array}{cc}
\frac{\partial}{\partial r} r \cos \theta & \frac{\partial}{\partial \theta} r \cos \theta \\
\frac{\partial}{\partial r} r \sin \theta & \frac{\partial}{\partial \theta} r \sin \theta
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r \\
& \text { Joint density of } R \text { and } \theta: \\
& \qquad g(r, \theta)=f(r \cos \theta, r \sin \theta)|M|=f(r \cos \theta, r \sin \theta) \cdot r
\end{aligned}
$$

(b) Suppose X and Y are independent with $f(x)=2 x$ for $0<x<1$ and $f(y)=2 y$ for $0<y<1$. Use your result from part (a) to find the probability that (X, Y) lies inside the circle of radius 1 centered at the origin.

$$
\begin{aligned}
& \text { Joint density of } X \text { and } Y: \quad f(x, y)=4 x y \text { for } 0<x<1,0<y<1 \\
& \text { From part (a), joint density of } R \text { and } \theta \text { is: } \\
& \qquad g(r, \theta)=f(r \cos \theta, r \sin \theta) r=4(r \cos \theta)(r \sin \theta) r=4 r^{3} \cos \theta \sin \theta \\
& \text { The point }(X, Y) \text { lies within the unit circle iff } R<1 . \\
& \text { Since both } X \text { and } Y \text { are both positive, } 0<\theta<\frac{\pi}{2} \text {, so prob. } R<1 \text { is given by } \\
& \qquad P(R<1)=\int_{0}^{\pi / 2} \int_{0}^{1} 4 r^{3} \cos \theta \sin \theta d r d \theta=\frac{1}{2} .
\end{aligned}
$$

