Math 262 - 18 September 2019
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5. Suppose that a patient is tested for a disease. Let A be the event that the test is positive, and let D
be the event that the patient actually has the disease. Further suppose that:

P(A|D) =099 (sensitivity: probability of a positive test if the patient has the disease)
P(A"|D") =0.99 (specificity: probability of a negative test if the patient doesn't have the disease)

(a) Rare disease: If P(D) = 0.01, what is the probability that a patient who tests positive actually
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(b) Common disease: If P(D) = 0.1, what is the probability that a patient who tests positive
actually has the disease?
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1. A red die and a blue die are rolled. Let 4 be the event that the red die rolls 2, let B be the event that
the sum of the rolls is 5, and let C be the event that the sum of the rolls is 7.

(a) Find P(A) and P(A | B). If you know whether B occurs, does it affect your assessment of the
probability that A also occurs?
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(b) Now find P(A | C). If you know whether C occurs, does it affect your assessment of the
probability that A also occurs?
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2. A sequence of n independent trials are to be performed. Each trial results in a success with
probability p and a failure with probability 1 — p. What is the probability that...

(a) ...all trials result in successes?
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(b) ...at least one trials results in a success?
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(c) ...exactly k trials result in successes?
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3. Consider an urn containing four balls, numbered 110, 101, 011, and 000. One ball is drawn at
random. For k = 1,2,3, let A;, be the event that the kt digit is a 1 on the ball that is drawn.

(a) Are the events A4, 4,, and A3 pairwise independent? Why or why not?
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(b) Are the events 4;, A,, and A3 mutually independent? Why or why not?
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