Warm-Up: For each of the following experiments, state the sample space and any three events:
(a) A coin is flipped until heads appears, and the number of flips is recorded.

$$
\begin{aligned}
& S=\{H, T H, T T H, T T T H, \ldots\} \cup\{T \ldots\} \\
& \rho^{\circ=}=\left\{T^{i} H \mid i \geq 0 \text { integer }\right\} \cup\left\{T^{\infty}\right\} \\
& \rho^{\circ}=\{1,2,3,4, \ldots\} \cup\{\infty\}
\end{aligned}
$$

EVENTS:
$\{T H\}$
$\{1,2,3,4,5,6\}$
$\{2,4,6,8, \ldots\}$
(b) A real number is selected between 0 and 1 .
$S=(0,1)$ open interval
EVENTS:
$\left(0, \frac{1}{2}\right)$
$\{0.1\}$

$$
\{0.1,0.9\}
$$

1. Let A and B be events in a sample space. Draw Venn diagrams to illustrate each of the following events:

$$
(A \cap B)^{\prime} \quad(A \cup B)^{\prime} \quad A^{\prime} \cap B^{\prime} \quad A^{\prime} \cup B^{\prime}
$$

$(A \cup B)^{\prime} \xlongequal[\text { same }]{ } A^{\prime} \cap B^{\prime}$

What do you observe from your Venn diagrams?
DE MORGAN'S LAW:

$$
\begin{aligned}
& (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \longleftarrow \text { the complement of an intersection is } \\
& \text { the union of the complements } \\
& (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \longleftarrow \text { the complement of a union is the } \\
& \text { intersection of the complements }
\end{aligned}
$$

axioms of probability

1. $P(A) \geq 0$ for ar evert A
2. $P(S)=1 \quad$ Probability that something Kappas is 1.
3. If A_{1}, A_{2}, A_{3}... is an infinite collection of disjoint evans,
then $P\left(A_{1} \cup A_{2} \cup A_{3} \cup \ldots\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$
Prob, of union of disjasent erects is sse of the polucililtes
4. Show that $P(\varnothing)=0$ follows from Axiom 3 .

Let $A_{1}=A_{2}=A_{3}=\cdots=\varnothing$. That is, $A_{i}=\varnothing$ for all:
Axiom 3: $\quad P(\phi \cup \phi \cup \varnothing \cup \ldots)=\sum_{i=1}^{\infty} P(\phi)$

$$
P(\phi)=\sum_{i=1}^{\infty} P(\phi)
$$

This only makes sense if $P(\phi)=0$.

COMPLEMENT RULE: For any event $A, P\left(A^{\prime}\right)=1-P(A)$.
Why? Let $A_{1}=A, A_{2}=A^{\prime}$, and $A_{3}=A_{4}=A_{5}=\cdots=\varnothing$
Axiom 3: $\quad P\left(A \cup A^{\prime} \cup \varnothing \cup \phi \cup \cdots\right)=P(A)+P\left(A^{\prime}\right)+\sum_{i=3}^{\infty} P(\varnothing)$

$$
\begin{array}{ll}
P\left(A \cup A^{\prime}\right)=P(A)+P\left(A^{\prime}\right) & 0 \\
1=P(S)=P(A)+P\left(A^{\prime}\right) & \text { Thu, } P\left(A^{\prime}\right)=1-P(A)
\end{array}
$$

3. Show how the Complement Rule implies that $P(A) \leq 1$ for any event A.

Complement Rule: $1=P(A)+P\left(A^{\prime}\right)$
Recall Axiom 1: $P\left(A^{\prime}\right) \geq 0$
Then: $P(A)=1-P\left(A^{\prime}\right)$ is one subtract something non-negative
So: $P(A) \leq 1$
4. If A and B are disjoint, Axiom 3 says $P(A \cup B)=P(A)+P(B)$. How could you modify this statement to hold if A and B are not disjoint?

Let $A_{1}=A, A_{2}=B, A_{i}=\varnothing$ for $i \geq 3$.

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

ADdition rule

$$
P(A)+P(B)=P(A \cup B)+P(A \cap B)
$$

5. Generalize your answer from \#4 above to three sets. That is, what can you say about $P(A \cup B \cup C)$?

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

ADDITIVITY PROPERTY
or Inclusion-EXCLUSION PRINCIPLE

