

Square: 2^{2}-gan
side length: $s_{2}=\sqrt{2}$

$$
\begin{aligned}
\pi_{2}^{i}=\frac{4 s_{2}}{2} & =2 s_{2}=2 \sqrt{2} \\
& \approx 2.282 \ldots
\end{aligned}
$$

Octagon: 2^{3}-gan

$$
\begin{aligned}
& a=\sqrt{1-\left(\frac{S_{2}}{2}\right)^{2}}=\sqrt{1-\left(\frac{\sqrt{2}}{2}\right)^{2}}=\cdots=\frac{1}{\sqrt{2}} \\
& b=1-a
\end{aligned}
$$

Circumference: 2π
side length: $s_{3}=\sqrt{b^{2}+\left(\frac{s_{2}}{2}\right)^{2}}=\sqrt{\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}}$

$$
S_{3}=\sqrt{2-\sqrt{2}}
$$

$$
\pi: \quad \pi_{3}^{i}=\frac{8 s_{3}}{2}=4 \sqrt{2-\sqrt{2}} \approx 3.061 \ldots
$$

16-gon: 2^{4}-gan

$$
\begin{aligned}
& a=\sqrt{1-\left(\frac{5_{3}}{2}\right)^{2}}=\frac{1}{2} \sqrt{2+\sqrt{2}} \\
& b=1-a
\end{aligned}
$$

Side length: $s_{4}=\sqrt{b^{2}+\left(\frac{s_{3}}{2}\right)^{2}}=\sqrt{2-\sqrt{2+\sqrt{2}}}$
$\pi_{i} \quad \pi_{4}^{i}=\frac{16 s_{4}}{2}=8 \sqrt{2-\sqrt{2+\sqrt{2}}} \approx 3.121$

