Second-Order Linear Equations

$$
a\left[\frac{d_{y}^{2}}{d t^{2}}+b \frac{d y}{d t}+c y=0 \quad(a, b, c \in \mathbb{R}, a \neq 0)\right.
$$

Convert to a system: $\left\{\begin{array}{l}\frac{d y}{d t}=v \\ \frac{d v}{d t}=-\frac{c}{a} y-\frac{b}{a} v\end{array}\right.$
Matrix notation:

$$
\begin{array}{r}
{\left[\begin{array}{l}
\frac{d y}{d t} \\
\frac{d v}{d t}
\end{array}\right]=} \\
A
\end{array}\left[\begin{array}{cc}
0 & 1 \\
-\frac{c}{a} & -\frac{b}{a}
\end{array}\right]\left[\begin{array}{l}
y \\
v
\end{array}\right] \xrightarrow{\text { solve }} \underset{\xrightarrow{\sin }(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
-\lambda & 1 \\
-\frac{c}{a} & -\frac{b}{a}-\lambda
\end{array}\right]}{ } \begin{array}{r}
\operatorname{det}\left(\lambda^{2}+\frac{b}{a} \lambda+\frac{c}{a}=0\right.
\end{array}
$$

characteristic polynomial $a \lambda^{2}+b \lambda+c=0$ roots of this polynomial are the eigenvalues
[CASES:

- Two distinct roots $\lambda_{1}, \lambda_{2}: \quad y(t)=k_{1} e^{\lambda_{1} t}+k_{2} e^{\lambda_{2} t}$
- Repeated root: λ : $\quad y(t)=k_{1} e^{\lambda t}+k_{2} t e^{\lambda t}$
- Complex conjugate roots: $\lambda=\alpha+i \beta \quad y(t)=k_{1} e^{\alpha t} \cos (\beta t)+k_{2} e^{\alpha t} \sin (\beta t)$]

EXAMPLES:

1. $y^{\prime \prime}-y=0 \quad$ characteristic polynomial: $\quad \lambda^{2}-1=0$

$$
y^{\prime \prime}=y
$$

$$
\text { so } \lambda= \pm 1
$$

general solution: $y(t)=k_{1} e^{t}+k_{2} e^{-t}$
2. $y^{\prime \prime}-2 y^{\prime}+5 y=0 \quad$ characteristic polynomial: $\lambda^{2}-2 \lambda+5=0$

$$
\lambda=1 \pm 2 i
$$

general solution: $y(t)=k_{1} e^{t} \cos (2 t)+k_{2} e^{t} \sin (2 t)$
harmonic oscillators

UNDAMPED: $\quad b=0 \quad$ equation: $m y^{\prime \prime}+k y=0$

characteristic polynomial: $m \lambda^{2}+k=0$

$$
\begin{aligned}
& \lambda^{2}=\frac{-k}{m} \text {, so } \underbrace{\lambda= \pm i \sqrt{\frac{k}{m}}}_{\text {pure imaginary }} \\
& +k_{2} \sin \left(t \sqrt{\frac{k}{m}}\right)
\end{aligned}
$$

Solution:

DAMPED: $\quad b \neq 0 \quad$ charactaistic polynomial: $m \lambda^{2}+b \lambda+k=0$

$$
\lambda=\frac{-b \pm \sqrt{b^{2}-4 m k}}{2 m} \leftarrow
$$

- If $b^{2}-4 m k>0$, then two real roots λ_{1} and $\lambda_{2}, 0<b^{2}-4 m k<b^{2}$ both λ_{1} and λ_{2} are negative!
Solution: $y(t)=k_{1} e^{\lambda_{1} t}+k_{2} e^{\lambda_{2} t}$
OVERDAMPED
- If $b^{2}-4 m k=0$, then repeated root $\lambda=\frac{-b \pm 0}{2 m}=-\frac{b}{2 m}$

solution: $y(t)=k_{1} e^{\lambda t}+k_{2} t e^{\lambda t} \quad$ CRITICALLY DAMPED
- If $b^{2}-4 m k<0$, then complex conjugate coots $\lambda=\frac{-b \pm i \sqrt{4 m k-b^{2}}}{2 m}=\begin{gathered}\alpha<i \beta \\ \alpha<0\end{gathered}$

Solution: $y(t)=k_{1} e^{\alpha t} \cos (\beta t)+k_{2} e^{\alpha t} \sin (\beta t)$

$$
\alpha=\frac{-b}{2 m}, \beta=\frac{\sqrt{4 m k-b^{2}}}{2 m}
$$

UNDERDAMPED

WORKSHEET: $\quad y^{\prime \prime}+p y^{\prime}+y=0$

1. Undamped: $p=0, \lambda= \pm i, \quad y(t)=k_{1} \cos (t)+k_{2} \sin (t)$
2. under damped: $0<p<2, \quad \lambda=\frac{-p}{2} \pm i \frac{\sqrt{4-p^{2}}}{2}$,

$$
y(t)=e^{\frac{-\rho}{2} t}\left(k_{1} \cos \left(\frac{\sqrt{4-r^{2}}}{2} t\right)+k_{2} \sin \left(\frac{\sqrt{4-p^{2}}}{2} t\right)\right)
$$

3. critically damped: $p=2, \quad \lambda=\frac{-p}{2}=-1, \quad y(t)=k_{1} e^{-t}+k_{2} t e^{-t}$
4. Over damped: $p>2, \quad \lambda=\frac{-p \pm \sqrt{p^{2}-4}}{2}$,

$$
y(t)=k_{1} e^{\frac{-p+\sqrt{p^{2}-4}}{2} t}+k_{2} e^{\frac{-p-\sqrt{p^{2}-4}}{2} t}
$$

