Repeated Eigenvalues:
A: 2×2 matrix with only 1 real eigenvalue (algebraic multiplicity 2)
Case 1: Only 1 linearly independent eigenvector
General solution: $\vec{Y}(t)=\vec{V} e^{\lambda t}+\vec{W}_{t} e^{\lambda t}$
If $\vec{Y}(0)=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$, then: $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]=\vec{V} e_{1}^{\lambda(\theta)}+\underset{\vec{W}(\theta) e^{\lambda(\theta)}}{0}$
so $\vec{V}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ and $\vec{W}=(A-\lambda I) \vec{V}$.

WORKSHEET

1. $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left[\begin{array}{cc}
1-\lambda & 1 \\
-1 & 3-\lambda
\end{array}\right]=(1-\lambda)(3-\lambda)-(-1)=\lambda^{2}-4 \lambda+3+1 \\
& =\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0
\end{aligned}
$$

so $\lambda=2$ is the all eigenvalue.
eigenvectors: $(A-2 I) \vec{v}_{1}=\overrightarrow{0}$

$$
\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \vec{V}_{2}=\overrightarrow{0} \text { so } \vec{V}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { or any multiple }
$$

$$
b \vec{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right],-x+y=0
$$

General solution: $\vec{Y}(t)=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right] e^{2 t}+\vec{W} t e^{2 t}$, where $\vec{W}=(A-2 I)\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$
2. (a) $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad$ so $\vec{Y}(t)=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{2 t}+\overrightarrow{0} \quad \vec{W}=(A-2 I)\left[\begin{array}{l}1 \\ 1\end{array}\right]=\overrightarrow{0}$

If $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ is an eigenvector, then $\vec{W}=\overrightarrow{0}$.
(b) $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ so $\vec{y}(t)=\left[\begin{array}{l}1 \\ 2\end{array}\right] e^{2 t}+\left[\begin{array}{l}1 \\ 1\end{array}\right] t e^{2 t}$

$$
\begin{aligned}
& \vec{w}=(A-2 I)\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \vec{w}=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

(c) $\left[\begin{array}{l}x_{0} \\ x_{0}\end{array}\right]$ So $\vec{y}(t)=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right] e^{2 t}+\left[\begin{array}{l}-x_{0}+y_{0} \\ -x_{0}+y_{0}\end{array}\right] t e^{2 t}$
3.

$$
\begin{aligned}
& \frac{d \vec{y}}{d t}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \vec{y} \\
& \text { if } x=0, y=1, \text { the } \\
& \frac{d x}{d t}=1(0)+1(1)=1 \\
& \frac{d y}{d t}=-1(0)+3(1)=3
\end{aligned}
$$

Case 2: Two linearly independent eigenvectors
4. B is a 2×2 matrix with only 1 eigenvalue λ and two linearly independent eigavectors
\rightarrow Then every nonzero vector is an eigenvector for eigenvalue λ !
$B=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right] \quad$ why? Since B has two lin. indef eigen vectors, it is diagonalizable.

$$
P^{-1} B P=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\lambda I \text {, which implies } B=P(\lambda I) P^{-1}=\lambda I
$$

System: $\frac{d \vec{y}}{d t}=B \vec{Y}=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right] \vec{y}$
5.
so: $\left\{\begin{array}{l}\frac{d x}{d t}=\lambda x(t) \\ \frac{d y}{d t}=\lambda y(t)\end{array} \quad\right.$ solution: $\left\{\begin{array}{l}x(t)=k, e^{\lambda t} \\ y(t)=k_{2} e^{\lambda t}\end{array}\right.$

ZERO EIGENVALUES (special case of real eigenoloes)
6. $C=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(C-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right] & =(1-\lambda)^{2}-1=\lambda^{2}-2 \lambda+1-1 \\
& =\lambda^{2}-2 \lambda
\end{aligned}=\lambda(\lambda-2)=0
$$

So eigenvalues: $\lambda=0, \lambda=2$
eigavectors $\quad \lambda_{1}=0: \quad(C-O I) \vec{v}_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \vec{v}_{1}=0$ so $\vec{v}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
\lambda_{i}=2: \quad(C-2 I) \vec{v}_{2}=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] \vec{v}_{2}=0 \text { so } \quad v_{2}=[1]
$$

Geneal Solution: $\vec{y}(t)=k_{1} \vec{v}_{1} e^{\lambda_{1} t}+k_{2} \vec{v}_{2} e^{\lambda_{2} t}$

$$
\begin{aligned}
& \vec{Y}(t)=k_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e_{1}^{O t}+k_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t} \\
& \vec{Y}(t)=k_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+k_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

7. (a) $\vec{Y}(0)=\left[\begin{array}{c}2 \\ -2\end{array}\right]$ then: $\left[\begin{array}{c}2 \\ -2\end{array}\right]=k_{k_{1}=2}\left[\begin{array}{c}1 \\ -1\end{array}\right]+k_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{2(0)}$
initial condition \rightarrow
is a multiple of the eigenvector for eigessale $\lambda=0$.

Particular solution:
line of
equilibrium
solutions
along $y=-x$
(b) $\vec{Y}(0)=\left[\begin{array}{c}3 \\ -1\end{array}\right]$

Particular solution:

$$
\vec{y}(t)=\underbrace{2\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}_{\text {constant }}+\underbrace{2\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}}_{\substack{x=e^{2 t} \\
y=e^{2 t}}}
$$

Linear Systems with Repeated or Zero Eigenvalues

Consider the matrix $\mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$.

1. Find the eigenvalues and eigenvectors of \mathbf{A}.

$$
\operatorname{det}(A-\lambda I)=\left[\begin{array}{cc}
1-\lambda & 1 \\
-1 & 3-\lambda
\end{array}\right]=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}
$$

so the only eigenvalue is $\lambda=2$
Eigenvector \vec{V} satisfies $(A-2 I) \vec{V}=\vec{O}$, so $\left[\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right] \vec{V}=\vec{O}$; thus $\vec{V}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
2. Find the solution with each of the following initial conditions:
(or any multiple).
(a) $\mathbf{Y}(0)=(1,1)$
(b) $\mathbf{Y}(0)=(1,2)$
(c) $\mathbf{Y}(0)=\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
& \text { (b) Let } \vec{V}_{0}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { and } \\
& \vec{V}_{1}=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{aligned}
$$

The solution is:

$\vec{Y}(t)=\left[\begin{array}{l}1 \\ 2\end{array}\right] e^{2 t}+\left[\begin{array}{l}1 \\ 1\end{array}\right] t e^{2 t}$
(c) Let $\vec{V}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ and

$$
\vec{V}_{1}=\left[\begin{array}{cc}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
y_{0}-x_{0} \\
y_{0}-x_{0}
\end{array}\right] .
$$

The solution is:
$\vec{Y}(t)=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right] e^{2 t}+\left[\begin{array}{l}y_{0}-x_{0} \\ y_{0}-x_{0}\end{array}\right] t e^{2 t}$.
$\vec{Y}(t)=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{2 t}$
3. What do you think the phase portrait looks like for this system?

4. Suppose ${ }^{2 \times 2}$ matrix \mathbf{B} has only one eigenvalue but two linearly independent eigenvectors. What can you say about matrix B? (Can you come up with any matrices with this property?)
It must be that $B=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]$.
Why? Sine B has two linearly independent eigenvectors, it is diagonalizable.
Then $P^{-1} B P=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\lambda I$. This implies $B=P(\lambda I) P^{-1}=\lambda I$.
5. For any matrix \mathbf{B} that you found above, what is the general solution to $\frac{d \mathbf{Y}}{d t}=\mathbf{B Y}$?

The linear system is $\frac{d \vec{Y}}{d t}=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right] \vec{Y}$, which has solution

$$
x(t)=k_{1} e^{\lambda t}, \quad y(t)=k_{2} e^{\lambda t} .
$$

(This system is completely decoupled.)

Consider the matrix $\mathbf{C}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
6. Find the eigenvalues and eigenvectors of \mathbf{C}.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right]=\lambda^{2}-2 \lambda=\lambda(\lambda-2)
$$

So eigenvalues are $\lambda_{1}=0, \lambda_{2}=2$
For $\lambda_{1}=0$, eigenvector is $\vec{V}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. For $\lambda_{2}=2$, eigenvector is $\vec{V}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(Or any multiple of these vectors.)
7. Find the solution with each of the following initial conditions:
(a) $\mathbf{Y}(0)=(2,-2)$

General Solution:

$$
\begin{aligned}
& \vec{Y}(t)=k_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{0 t}+k_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t} \\
& \vec{Y}(t)=k_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+k_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

(b) $\mathbf{Y}(0)=(3,-1)$
(c) $\mathbf{Y}(0)=\left(x_{0}, y_{0}\right)$
(a) Solution:

$$
Y(t)=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{0 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

This is an equilibrium solution!
(b) $k_{1}=2, k_{2}=1$

Solution:

$$
\vec{Y}(t)=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
$$

(c) $k_{1}=\frac{x_{0}-y_{0}}{2}, k_{2}=\frac{x_{0}+y_{0}}{2}$

Solution:

$$
\vec{Y}(t)=\frac{x_{0}-y_{0}}{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\frac{x_{0}+y_{y_{0}}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
$$

8. What do you think the phase portrait looks like for this system?

9. Suppose ${ }^{2 \times 2}$ matrix \mathbf{D} has only one eigenvalue, which is zero. What can you say about matrix D? (Can you come up with any matrices with this property?)
Examples: $\quad\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has only eigenvalue 0 and only one linearly independent eigenvector.
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is the only matrix with only eigenvalue 0 and two linearly independent eigenvectors
10. For any matrix \mathbf{D} that you found above, what is the general solution to $\frac{d \mathbf{Y}}{d t}=\mathbf{D Y}$?

For $D=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, the general solution is $\vec{Y}(t)=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]+\left[\begin{array}{c}y_{0} \\ 0\end{array}\right] t$. $\xrightarrow{ }$

For $D=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, the general solution is $\vec{Y}(t)=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right] . \leftarrow \begin{aligned} & \text { Every point is an } \\ & \text { equilibrium point! }\end{aligned}$

