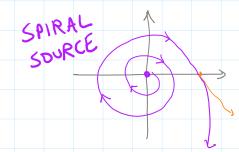
eigenvalues: $\lambda = 2 \pm i \sqrt{7}$ Positive real part

Solutions: $\vec{v}_i = \vec{v}_i =$



$$\frac{dx}{dt} = |(1) + 4(0)| = |$$

$$\frac{dy}{dt} = -2(1) + 3(0) = -2$$

At (1,0):

-> REPEATED EIGENVALUES
Sometimes matrix A has a repeated eigenvalue.
that is: $det(\mathbf{A} - \lambda \mathbf{I}) = (\lambda - c)^2$ for some $c \in \mathbb{R}$
X=c eigenvalue x=c has algebraic moltiplicity 2
CASE 1: Only 1 direction of eigenvectors
example! $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ eigenvalue! $\lambda = 1$, eigenvector: $\vec{v} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$
Solutions to $\frac{d\vec{y}}{dt} = A\vec{y}$: $\vec{Y}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} e^{t}$
Other solutions? Try: $\vec{y}(t) = \vec{V}e^{\lambda t} + \vec{W}te^{\lambda t}$
diff: $\frac{d\vec{y}}{dt} = \lambda \vec{V} e^{\lambda t} + \vec{W} \left(e^{\lambda t} + \lambda t e^{\lambda t} \right)$
$\frac{d\vec{v}}{dt} = (\lambda \vec{V} + \vec{W}) e^{\lambda t} + \lambda \vec{W} \cdot t e^{\lambda t}$
Plug in ∂O $\overrightarrow{A} = \overrightarrow{A} \overrightarrow{Y}$
$(\lambda \vec{V} + \vec{W})e^{\lambda t} + \lambda \vec{W}te^{\lambda t} = \mathbf{A} \vec{V}e^{\lambda t} + \mathbf{A} \vec{W}te^{\lambda t}$
We need: $\sqrt{V} + \vec{W} = \vec{A} \vec{V}$ and $\sqrt{W} = \vec{A} \vec{W}$ So \vec{W} is an eigenvector
$W = (\lambda - \lambda 1) V$
• If $\overrightarrow{W} = \overrightarrow{0}$, then \overrightarrow{V} is an eigenvector.
· If w≠6, then solve for v
(V is a generalized eigenvector.)
Summary: If A has only one linearly independent eigenvector,
then the general solution to $\frac{d\vec{y}}{dt} = \vec{A}\vec{y}$ is
$\vec{Y}(t) = \vec{\nabla}e^{\lambda t} + \vec{W}te^{\lambda t}$
QUESTIVE If $\vec{Y}(0) = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$, then how does this determine \vec{V} and \vec{U} ?