Note: $\quad \frac{d y}{d t}=f(t, y)$ is a differential equation
$f(t, y)$ is not a differential equation, its a function of two variables
Solution to $\frac{d y}{d t}=f(t, y)$ is $y(t)$.
undetermined coefficient method

$$
\begin{array}{lc}
\frac{d y}{d t}=a(t) y+b(t) & \frac{b(t)}{e^{a t}}
\end{array} \frac{\text { typical "guess" } y_{p}(t)}{A e^{a t}}
$$

Example: $\frac{d y}{d t}=2 y+e^{t} \cos (3 t)$
$\frac{d y}{d t}=2 y$ has
solution

$$
y_{h}(t)=e^{2 t}
$$

$$
\begin{aligned}
& y_{p}(t)=A e^{t} \cos (3 t)+B e^{t} \sin (3 t) \leftarrow \\
& \frac{d y_{p}}{d t}=A e^{t} \cos (3 t)-3 A e^{t} \sin (3 t)+B e^{t} \sin (3 t)+3 B e^{t} \cos (3 t)
\end{aligned}
$$

plug in to $\frac{d y}{d t}=2 y+e^{t} \cos (3 t)$

$$
A e^{K} \cos (3 t)-3 A ⿻^{*} \sin (3 t)+B \not_{2}^{*} \sin (3 t)+3 B e^{*} \cos (3 t)=2 A ⿻^{*} \cos (3 t)+2 B_{2}^{*} \sin (3 t)+E^{*} \cos (3 t)
$$

cos:

$$
\begin{array}{rlr}
A+3 B & =2 A+1 & \sin :-3 A+B=2 B \\
A+3(-3 A) & =2 A+1 & -3 A=B \\
A-9 A & =2 A+1 & -3 A=B \\
-8 A & =2 A+1 & -3\left(\frac{-1}{10}\right)=B \\
-10 A & =1 & \frac{3}{10}=B
\end{array}
$$

General solution to $\frac{d y}{d t}=2 y+e^{t} \cos (3 t)$ is:

$$
y(t)={\underset{q}{q}}_{k e^{2 t}-y_{h}(t)}^{\frac{1}{10} e^{t} \cos (3 t)+\frac{3}{10} \sin (3 t)}
$$

INTEGRATING FACTOR METHOD $\quad \frac{d y}{d t}+g(t) y=b(t)$

1. $\frac{d y}{d t}+\underset{g(t)}{-\frac{2}{t}} y=t$

$$
\begin{aligned}
& t^{2} \frac{d y}{d t}+t^{2} \frac{2}{t} y=t^{2} t \\
& t^{2} \frac{d y}{d t}+2 t y=t^{3} \\
& \int \frac{d}{d t}\left(t^{2} y\right) d t=\int t^{3} d t \\
& t^{2} y=\frac{1}{4} t^{4}+C
\end{aligned}
$$

2. $\frac{d y}{d t}-3 t^{2} y=e^{t^{3}}$

Integrating factor:

$$
\begin{gathered}
\mu(t)=e^{\int g(t) d t}=e^{\int \frac{2}{t} d t}=e^{2 \ln |t|} \\
=e^{\ln t^{2}}=t^{2}
\end{gathered}
$$

$$
y(t)=\frac{1}{4} t^{2}+c t^{-2}
$$

Integrating factor:

$$
\begin{aligned}
e^{-t^{3}} \frac{d y}{d t}-3 t^{2} e^{-t^{3}} y & =e^{t^{3}} e^{-t^{3}} \\
\int \frac{d}{d t}\left(e^{-t^{3}} y\right) d t & =\int 1 d t \\
e^{-t^{3}} y & =t+C \\
y(t) & =(t+c) e^{t^{3}}
\end{aligned}
$$

3. $\frac{d y}{d t}-\frac{2}{t+2} y=(t+2)^{3}$

$$
\mu(t)=e^{\int \frac{-2}{t+2} d t}=e^{-2 \ln |t+2|}=(t+2)^{-2}
$$

$$
\begin{aligned}
& \frac{d y}{d t}(t+2)^{-2}-2(t+2)^{-3} y=t+2 \\
& \int \frac{d}{d t}\left((t+2)^{-2} y\right) d t=(t+2) d t \\
& (t+2)^{-2} y=\frac{1}{2} t^{2}+2 t+C \quad \text { so } y(t)=(t+2)^{2}\left(\frac{1}{2} t^{2}+2 t+C\right)
\end{aligned}
$$

