More Practice Problems

MATH 126

Integration

- 1. Estimate $\int_0^2 x^2 x \, dx$ using a right-hand sum with n = 4 subintervals.
- 2. Evaluate $\int_0^1 x + \sqrt{1-x^2} dx$ without taking any antiderivatives.
- 3. A car is traveling down a road with velocity $v(t) = t^2 t$ meters per second (t is measured in seconds).
 - (a) How far from the starting point (t = 0) is the car after 5 seconds?
 - (b) What is the *total* distance the car drove between t = 0 and t = 5?
- 4. Evaluate each integral.

(a)
$$\int x^2 \cos(x^3) \, dx$$

(b)
$$\int x^2 \sin(x) \, dx$$

(c)
$$\int \frac{x+2}{x^2+4x} dx$$

(d)
$$\int \frac{x}{\sqrt{1-x^2}} \, dx$$

(e)
$$\int x^5 \ln(x) \, dx$$

(f)
$$\int \sin(x) \cos(\cos(x)) dx$$

(g)
$$\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

(h)
$$\int_0^4 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

(i)
$$\int_{e}^{\infty} \frac{1}{x(\ln(x))^2} \, dx$$

$$(j) \int_{1}^{\infty} \frac{x+1}{x\sqrt{x}} \, dx$$

- 5. Find the area of the region bounded by $y = x^2$ and $y = 4x x^2$.
- 6. Find the volume when region bounded by $y = x^2$ and $y = 4x x^2$ is rotated about the x-axis.

1

- 7. Find the volume when region bounded by $y = x^2$ and $y = 4x x^2$ is rotated about the line y = -2.
- 8. Find the volume when region bounded by $y = x^2$ and $y = 4x x^2$ is rotated about the line y = 6.
- 9. Find the length of the boundary of the region bounded by $y = x^2$ and $y = 4x x^2$.

Sequences and Series

- 1. Define what it means for a sequence $\{a_n\}$ to converge.
- 2. Define what it means for a series $\sum_{n=0}^{\infty} a_n$ to converge. (Your answer must involve the sequence of partial sums.)
- 3. Let $a_n = \frac{9^{n+1}}{10^n}$. Determine whether the sequence $\{a_n\}$ converges or diverges.
- 4. Let $a_n = \frac{9^{n+1}}{10^n}$. Determine whether the series $\sum_{n=0}^{\infty} a_n$ converges or diverges.
- 5. Find any example of a series that converges to π .
- 6. Does each series converge or diverge? Explain why.

(a)
$$\sum_{n=0}^{\infty} \frac{n}{n^3 + 1}$$

(b)
$$\sum_{n=0}^{\infty} \frac{n^3}{5^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{n^2 + n - 1}{n^3 + 5n^2 - n + 2}$$

(d)
$$\sum_{n=0}^{\infty} \frac{n^3 + 5n^2 - n + 2}{n^2 + n - 1}$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-5)^{2n}}{n^2 24^n}$$

(f)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

7. Find the interval of values of x for which $\sum_{n=2}^{\infty} \frac{(x+2)^n}{n4^n}$ converges. What is the radius of convergence?

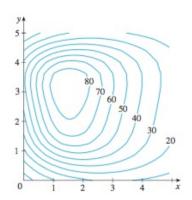
- 8. Find the Maclaurin Series for $f(x) = \frac{1}{1 x^5}$.
- 9. Find the Maclaurin Series for $f(x) = \frac{x}{2+x}$.
- 10. Find the Maclaurin Series for $f(x) = x \sin(x^4)$.
- 11. Find $f^{(28)}(0)$ and $f^{(29)}(0)$ for $f(x) = x \sin(x^4)$.
- 12. Without taking derivatives, find the first three nonzero terms of the Maclaurin Series for $f(x) = e^x \cos(x)$.
- 13. Find the Taylor polynomial of degree 3, centered at $a = \pi/2$, for $f(x) = x \cos(x)$.

3D Coordinates, Vectors, Lines, and Planes

- 1. Find a vector of length 3 in the opposite direction of (3, 2, 6).
- 2. Find parametric equations for the line through (4, -1, 2) and (1, 1, 6).
- 3. Find parametric equations for the line through (-2,2,4) and perpendicular to the plane 2x y + 5z = 17.
- 4. Find an equation for the plane through (1, 2, -2) that contains the line x = 2t, y = 3 t, z = 1 + 3t.

Derivatives and Integrals of 2-Variable Functions

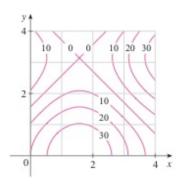
1. The contour map of f is shown below.



- (a) Estimate the value of f(3,2).
- (b) Is $f_x(3,2)$ positive or negative? Explain.
- (c) Which is greater, $f_y(2,1)$ or $f_y(2,2)$? Explain.
- 2. A metal plate is situated in the xy-plane and occupies the rectangle 0 < x < 10, 0 < y < 8, where x and y are measured in meters. The temperature at the point (x, y) in the plate is T(x, y), where T is measured in degrees Celsius. Temperatures at equally spaced points were measured and recorded in the table.

xy	0	2	4	6	8
0	30	38	45	51	55
2	52	56	60	62	61
4	78	74	72	68	66
6	98	87	80	75	71
8	96	90	86	80	75
10	92	92	91	87	78

- (a) Estimate the values of the partial derivatives $T_x(6,4)$ and $T_y(6,4)$. What are the real life meanings of these two numbers? Use units.
- (b) Estimate the value of $D_{\mathbf{u}}T(6,4)$, where $\mathbf{u}=\langle 1,1\rangle$. Interpret your result.
- 3. Calculate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for $z = xe^{xy}$.
- 4. Find the equation of the plane that is tangent to $f(x,y) = e^x \cos(y)$ when x = y = 0. Use this to estimate the value of $\cos(0.2)$.
- 5. For $f(x,y) = x^2 e^{-y}$, calculate $D_{\mathbf{u}} f(-2,0)$ when $\mathbf{u} = \langle 2, -3 \rangle$.
- 6. Find the maximum rate of change of $f(x,y) = x^2y + \sqrt{y}$ at the point (2,1).
- 7. Use a Riemann sum with m = n = 3 to approximate $\iint_R (xy^2 + x) dA$ where $R = [0, 3] \times [2, 8]$.
- 8. A contour map is shown for a function f on the square $R = [0, 4] \times [0, 4]$. Use A Riemann sum with midpoints (with m = n = 2) to estimate the value of $\iint_R f(x, y) dA$.



- 9. Calculate the exact value of $\iint_R (xy^2 + x) dA$ where $R = [0, 3] \times [2, 8]$.
- 10. Calculate the exact value of $\iint_R (xy^2 + x) dA$ where R is the triangle with vertices (0,0), (4,0), and (4,2).