Power Series

1. Warm-up:

(a) What numerical values of x will make the series $\sum_{n=0}^{\infty} x^n$ converge?

 \mathfrak{D} Would it be easier for you if we used the letter r instead of the letter x?

(b) For the values of x you found in (a), what is the actual sum of the series?

 $\ \ \, \mathring{\mbox{O}} \ \, \mbox{Hopefully There}$ should be an x in your answer, since the sum depends on what x is.

- (c) What numerical values of x will make the series $\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$ converge?
- (d) For the values of x you found in (c), what is the actual sum of the series?
- 2. Chloe: My personal favorite series is:

$$1 + 2x + 4x^2 + 8x^3 + 16x^4 + 32x^5 + \cdots$$

Can you help me write this in summation notation, please?

Group task: Help Chloe out.

Simon: Your series converges to $\frac{1}{1-2x}$.

Chloe: Thanks, Simon, but I think you forgot one detail.

Group chat: What values of x allow Chloe's series to converge? Is the sum really $\frac{1}{1-2x}$?

- **3.** Find the sum of this series (in terms of x): $1 x + x^2 x^3 + x^4 x^5 + \cdots$ Which values of x allow this series to converge?
- **4.** Can you figure out what this series converges to and which values of x allow the series to converge?

$$1 + x^2 + x^4 + x^6 + x^8 + x^{10} + \cdots$$

- 5. Let's try the problem backwards now!
 - (a) Come up with a power series that converges to $\frac{1}{1-3x}$.
 - (b) Come up with a power series that converges to $\frac{1}{1-x^3}$.
 - (c) Come up with a power series that converges to $\frac{1}{4+x}$.

(d) Come up with a power series that converges to $\frac{x^2}{1-x}$.

 \Im Factor out x^2 .

6. For what numerical values of x does each series converge? What is the radius of convergence for series?

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

 \circ Cool fact: 0! = 1.

- (b) $\sum_{n=0}^{\infty} n! x^n$
- (c) $\sum_{n=0}^{\infty} \frac{x^n}{n \, 2^n}$
- 7. Experiment! Go back to #6(a) and plug in x=1. Pull out a calculator/laptop and add up a TON of the terms. Discuss.